These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 15479020)
41. Identification of factors responsible for insecticide resistance in Helicoverpa armigera. Srinivas R; Udikeri SS; Jayalakshmi SK; Sreeramulu K Comp Biochem Physiol C Toxicol Pharmacol; 2004 Mar; 137(3):261-9. PubMed ID: 15171950 [TBL] [Abstract][Full Text] [Related]
42. Evaluation of mechanisms of azinphos-methyl resistance in the codling moth Cydia pomonella (L.). Reuveny H; Cohen E Arch Insect Biochem Physiol; 2004 Oct; 57(2):92-100. PubMed ID: 15378568 [TBL] [Abstract][Full Text] [Related]
43. Esterase enzymes involved in pyrethroid and organophosphate resistance in a Brazilian population of Riphicephallus (Boophilus) microplus (Acari, Ixodidae). Baffi MA; de Souza GR; de Sousa CS; Ceron CR; Bonetti AM Mol Biochem Parasitol; 2008 Jul; 160(1):70-3. PubMed ID: 18472171 [TBL] [Abstract][Full Text] [Related]
44. [3 combinations of esterases and their relation with the resistance to organophosphate, carbamate, and pyrethroid insecticides in Culex quinquefasciatus Say, 1823 (Diptera: Culicidae) in Cuba]. Bisset JA; Diéguez L; Rodríguez MM; Díaz C; González T; Vázquez R Rev Cubana Med Trop; 1996; 48(1):5-11. PubMed ID: 9768262 [TBL] [Abstract][Full Text] [Related]
45. [High esterases as mechanism of resistance to organophosphate insecticides in Aedes aegypti strains]. Bisset JA; Rodríguez MM; Molina D; Díaz C; Soca LA Rev Cubana Med Trop; 2001; 53(1):37-43. PubMed ID: 11826536 [TBL] [Abstract][Full Text] [Related]
46. Comparative acaricide susceptibility and detoxifying enzyme activities in field-collected resistant and susceptible strains of Tetranychus urticae. Van Leeuwen T; Van Pottelberge S; Tirry L Pest Manag Sci; 2005 May; 61(5):499-507. PubMed ID: 15657956 [TBL] [Abstract][Full Text] [Related]
47. Molecular cloning, purification, and biochemical characterization of a novel pyrethroid-hydrolyzing esterase from Klebsiella sp. strain ZD112. Wu PC; Liu YH; Wang ZY; Zhang XY; Li H; Liang WQ; Luo N; Hu JM; Lu JQ; Luan TG; Cao LX J Agric Food Chem; 2006 Feb; 54(3):836-42. PubMed ID: 16448191 [TBL] [Abstract][Full Text] [Related]
48. Prevalence and potential risk factors for organophosphate and pyrethroid resistance in Boophilus microplus ticks on cattle ranches from the State of Yucatan, Mexico. Rodriguez-Vivas RI; Alonso-Díaz MA; Rodríguez-Arevalo F; Fragoso-Sanchez H; Santamaria VM; Rosario-Cruz R Vet Parasitol; 2006 Mar; 136(3-4):335-42. PubMed ID: 16413971 [TBL] [Abstract][Full Text] [Related]
49. Comparison of the reproductive biology between acaricide-resistant and acaricide-susceptible Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Davey RB; George JE; Miller RJ Vet Parasitol; 2006 Jun; 139(1-3):211-20. PubMed ID: 16584844 [TBL] [Abstract][Full Text] [Related]
50. [Cross resistance to pyrethroids in Aedes aegypti from Cuba induced by the selection with organophosphate malathion]. Rodríguez MM; Bisset JA; Díaz C; Soca LA Rev Cubana Med Trop; 2003; 55(2):105-11. PubMed ID: 15849966 [TBL] [Abstract][Full Text] [Related]
51. Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis. Heidari R; Devonshire AL; Campbell BE; Dorrian SJ; Oakeshott JG; Russell RJ Insect Biochem Mol Biol; 2005 Jun; 35(6):597-609. PubMed ID: 15857765 [TBL] [Abstract][Full Text] [Related]
52. Identification and characterization of a novel thermostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach. Fan X; Liu X; Huang R; Liu Y Microb Cell Fact; 2012 Mar; 11():33. PubMed ID: 22409882 [TBL] [Abstract][Full Text] [Related]
54. Development of optically pure pyrethroid-like fluorescent substrates for carboxylesterases. Huang H; Stok JE; Stoutamire DW; Gee SJ; Hammock BD Chem Res Toxicol; 2005 Mar; 18(3):516-27. PubMed ID: 15777092 [TBL] [Abstract][Full Text] [Related]
55. Sex-related differences in the tolerance of Oriental fruit moth (Grapholita molesta) to organophosphate insecticides. de Lame FM; Hong JJ; Shearer PW; Brattsten LB Pest Manag Sci; 2001 Sep; 57(9):827-32. PubMed ID: 11561409 [TBL] [Abstract][Full Text] [Related]
56. Resistance of Aedes aegypti (Diptera: Culicidae) in 2006 to pyrethroid insecticides in Indonesia and its association with oxidase and esterase levels. Ahmad I; Astari S; Tan M Pak J Biol Sci; 2007 Oct; 10(20):3688-92. PubMed ID: 19093483 [TBL] [Abstract][Full Text] [Related]
57. Characterization on malathion and permethrin resistance by bioassays and the variation of esterase activity with the life stages of the mosquito Culex quinquefasciatus. Selvi S; Edah MA; Nazni WA; Lee HL; Azahari AH Trop Biomed; 2007 Jun; 24(1):63-75. PubMed ID: 17568379 [TBL] [Abstract][Full Text] [Related]
58. Assay of pyrethroid-hydrolysing esterases using (1,R)-cis-3-(2,2-dibromovinyl)-2,2-dimethyl cyclopropane carboxylates as substrates. Wallace G; Casabé N; Wood E; Zerba E Xenobiotica; 1988 Apr; 18(4):351-5. PubMed ID: 2456644 [TBL] [Abstract][Full Text] [Related]
59. Species and structural variations affecting pyrethroid neurotoxicity. Glickman AH; Casida JE Neurobehav Toxicol Teratol; 1982; 4(6):793-9. PubMed ID: 6763155 [TBL] [Abstract][Full Text] [Related]
60. Esterase isoenzymes and insecticide resistance in Frankliniella occidentalis populations from the south-east region of Spain. López-Soler N; Cervera A; Moores GD; Martínez-Pardo R; Garcerá MD Pest Manag Sci; 2008 Dec; 64(12):1258-66. PubMed ID: 18688781 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]