BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

520 related articles for article (PubMed ID: 15479097)

  • 1. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures.
    Tsuji I; Kato H; Kobayashi H; Kudo A
    J Am Chem Soc; 2004 Oct; 126(41):13406-13. PubMed ID: 15479097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocatalytic H2 evolution under visible-light irradiation over band-structure-controlled (CuIn)xZn2(1-x)S2 solid solutions.
    Tsuji I; Kato H; Kobayashi H; Kudo A
    J Phys Chem B; 2005 Apr; 109(15):7323-9. PubMed ID: 16851838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution.
    Wang DH; Wang L; Xu AW
    Nanoscale; 2012 Mar; 4(6):2046-53. PubMed ID: 22327298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photophysical and photocatalytic properties of Ca(1-x)BixVxMo(1-x)O4 solid solutions.
    Yao W; Ye J
    J Phys Chem B; 2006 Jun; 110(23):11188-95. PubMed ID: 16771382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between the band positions of (SrTiO3)1-x.(LaTiO2N)x solid solutions and photocatalytic properties under visible light irradiation.
    Luo W; Li Z; Jiang X; Yu T; Liu L; Chen X; Ye J; Zou Z
    Phys Chem Chem Phys; 2008 Nov; 10(44):6717-23. PubMed ID: 18989485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation.
    Shimodaira Y; Kato H; Kobayashi H; Kudo A
    J Phys Chem B; 2006 Sep; 110(36):17790-7. PubMed ID: 16956264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure.
    Kato H; Asakura K; Kudo A
    J Am Chem Soc; 2003 Mar; 125(10):3082-9. PubMed ID: 12617675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multicomponent sulfides as narrow gap hydrogen evolution photocatalysts.
    Ikeda S; Nakamura T; Harada T; Matsumura M
    Phys Chem Chem Phys; 2010 Nov; 12(42):13943-9. PubMed ID: 20852813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A facile synthesis of Zn(x)Cd(1-x)S/CNTs nanocomposite photocatalyst for H2 production.
    Wang L; Yao Z; Jia F; Chen B; Jiang Z
    Dalton Trans; 2013 Jul; 42(27):9976-81. PubMed ID: 23703674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A titanium-based oxysulfide photocatalyst: La5Ti2MS5O7 (M = Ag, Cu) for water reduction and oxidation.
    Suzuki T; Hisatomi T; Teramura K; Shimodaira Y; Kobayashi H; Domen K
    Phys Chem Chem Phys; 2012 Nov; 14(44):15475-81. PubMed ID: 23072760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic structure and photocatalytic characterization of a novel photocatalyst AgAlO2.
    Ouyang S; Zhang H; Li D; Yu T; Ye J; Zou Z
    J Phys Chem B; 2006 Jun; 110(24):11677-82. PubMed ID: 16800462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles.
    Chuang HY; Chen DH
    Nanotechnology; 2009 Mar; 20(10):105704. PubMed ID: 19417532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced photocatalytic hydrogen evolution efficiency using hollow microspheres of (CuIn)(x)Zn(2(1-x))S2 solid solutions.
    Huang Y; Chen J; Zou W; Zhang L; Hu L; Yu R; Deng J; Xing X
    Dalton Trans; 2015 Jun; 44(24):10991-6. PubMed ID: 25989186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Defects Enhanced Visible Light Photocatalytic H2 Production for Zn-Cd-S Solid Solution.
    Zhang X; Zhao Z; Zhang W; Zhang G; Qu D; Miao X; Sun S; Sun Z
    Small; 2016 Feb; 12(6):793-801. PubMed ID: 26691211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalytic hydrogen production from water over M-doped La2Ti2O7 (M = Cr, Fe) under visible light irradiation (lambda > 420 nm).
    Hwang DW; Kim HG; Lee JS; Kim J; Li W; Oh SH
    J Phys Chem B; 2005 Feb; 109(6):2093-102. PubMed ID: 16851200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic studies of the photocatalytic oxidation of trichloroethylene with visible-light-driven N-doped TiO2 photocatalysts.
    Joung SK; Amemiya T; Murabayashi M; Itoh K
    Chemistry; 2006 Jul; 12(21):5526-34. PubMed ID: 16548017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solar hydrogen production over novel metal sulfide photocatalysts of AGa2In3S8 (A = Cu or Ag) with layered structures.
    Kaga H; Saito K; Kudo A
    Chem Commun (Camb); 2010 Jun; 46(21):3779-81. PubMed ID: 20383409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3-/I-.
    Abe R; Sayama K; Sugihara H
    J Phys Chem B; 2005 Aug; 109(33):16052-61. PubMed ID: 16853039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple template-free synthesis of nanoporous ZnS-In2S3-Ag2S solid solutions for highly efficient photocatalytic H2 evolution under visible light.
    Li Y; Chen G; Zhou C; Sun J
    Chem Commun (Camb); 2009 Apr; (15):2020-2. PubMed ID: 19333477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation.
    Kudo A; Tsuji I; Kato H
    Chem Commun (Camb); 2002 Sep; (17):1958-9. PubMed ID: 12271693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.