BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 15479112)

  • 1. Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method.
    Bisquert J; Zaban A; Greenshtein M; Mora-Seró I
    J Am Chem Soc; 2004 Oct; 126(41):13550-9. PubMed ID: 15479112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells.
    Salvador P; Hidalgo MG; Zaban A; Bisquert J
    J Phys Chem B; 2005 Aug; 109(33):15915-26. PubMed ID: 16853020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of photovoltage decay transients in dye-sensitized solar cells.
    Walker AB; Peter LM; Lobato K; Cameron PJ
    J Phys Chem B; 2006 Dec; 110(50):25504-7. PubMed ID: 17165999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation energy of electron transport in dye-sensitized TiO2 solar cells.
    Boschloo G; Hagfeldt A
    J Phys Chem B; 2005 Jun; 109(24):12093-8. PubMed ID: 16852492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells.
    Bailes M; Cameron PJ; Lobato K; Peter LM
    J Phys Chem B; 2005 Aug; 109(32):15429-35. PubMed ID: 16852957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular adjustment of the electronic properties of nanoporous electrodes in dye-sensitized solar cells.
    Rühle S; Greenshtein M; Chen SG; Merson A; Pizem H; Sukenik CS; Cahen D; Zaban A
    J Phys Chem B; 2005 Oct; 109(40):18907-13. PubMed ID: 16853434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of high efficiency dye-sensitized solar cells.
    Wang Q; Ito S; Grätzel M; Fabregat-Santiago F; Mora-Seró I; Bisquert J; Bessho T; Imai H
    J Phys Chem B; 2006 Dec; 110(50):25210-21. PubMed ID: 17165965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A numerical model for charge transport and recombination in dye-sensitized solar cells.
    Anta JA; Casanueva F; Oskam G
    J Phys Chem B; 2006 Mar; 110(11):5372-8. PubMed ID: 16539471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient eosin y dye-sensitized solar cell containing Br-/Br3- electrolyte.
    Wang ZS; Sayama K; Sugihara H
    J Phys Chem B; 2005 Dec; 109(47):22449-55. PubMed ID: 16853924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of activation energies for transport and recombination in mesoporous TiO2/dye/electrolyte films--taking into account surface charge shifts with temperature.
    O'Regan BC; Durrant JR
    J Phys Chem B; 2006 May; 110(17):8544-7. PubMed ID: 16640403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells.
    Wang Q; Moser JE; Grätzel M
    J Phys Chem B; 2005 Aug; 109(31):14945-53. PubMed ID: 16852893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled analysis of steady-state and dynamic characteristics of dye-sensitized solar cells for determination of conduction band movement and recombination parameters.
    Shi Y; Dong X
    Phys Chem Chem Phys; 2013 Jan; 15(1):299-306. PubMed ID: 23165346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of solid-state dye-sensitized solar cells utilizing high absorption coefficient metal-free organic dyes.
    Howie WH; Claeyssens F; Miura H; Peter LM
    J Am Chem Soc; 2008 Jan; 130(4):1367-75. PubMed ID: 18177043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring charge transport from transient photovoltage rise times. A new tool to investigate electron transport in nanoparticle films.
    O'Regan BC; Bakker K; Kroeze J; Smit H; Sommeling P; Durrant JR
    J Phys Chem B; 2006 Aug; 110(34):17155-60. PubMed ID: 16928011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation and measurement of complete dye sensitised solar cells: including the influence of trapping, electrolyte, oxidised dyes and light intensity on steady state and transient device behaviour.
    Barnes PR; Anderson AY; Durrant JR; O'Regan BC
    Phys Chem Chem Phys; 2011 Apr; 13(13):5798-816. PubMed ID: 21327204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells?
    Cameron PJ; Peter LM
    J Phys Chem B; 2005 Apr; 109(15):7392-8. PubMed ID: 16851846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of charge transport and recombination on the performance of dye-sensitized solar cells.
    Wang M; Chen P; Humphry-Baker R; Zakeeruddin SM; Grätzel M
    Chemphyschem; 2009 Jan; 10(1):290-9. PubMed ID: 19115326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-domain ab initio study of charge relaxation and recombination in dye-sensitized TiO2.
    Duncan WR; Craig CF; Prezhdo OV
    J Am Chem Soc; 2007 Jul; 129(27):8528-43. PubMed ID: 17579405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the free-energy dependence of interfacial charge-transfer rate constants using ZnO/H2O semiconductor/liquid contacts.
    Hamann TW; Gstrein F; Brunschwig BS; Lewis NS
    J Am Chem Soc; 2005 Jun; 127(21):7815-24. PubMed ID: 15913371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct measurement of the temperature coefficient of the electron quasi-fermi level in dye-sensitized nanocrystalline solar cells using a titanium sensor electrode.
    Lobato K; Peter LM
    J Phys Chem B; 2006 Nov; 110(43):21920-3. PubMed ID: 17064159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.