These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 15479157)

  • 1. The roles of Sp1, Sp3, USF1/USF2 and NRF-1 in the regulation and three-dimensional structure of the Fragile X mental retardation gene promoter.
    Kumari D; Gabrielian A; Wheeler D; Usdin K
    Biochem J; 2005 Mar; 386(Pt 2):297-303. PubMed ID: 15479157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occupancy and synergistic activation of the FMR1 promoter by Nrf-1 and Sp1 in vivo.
    Smith KT; Coffee B; Reines D
    Hum Mol Genet; 2004 Aug; 13(15):1611-21. PubMed ID: 15175277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of the transcription factors USF1, USF2, and alpha -Pal/Nrf-1 with the FMR1 promoter. Implications for Fragile X mental retardation syndrome.
    Kumari D; Usdin K
    J Biol Chem; 2001 Feb; 276(6):4357-64. PubMed ID: 11058604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional analyses of DNA bending induced by Sp1 family transcription factors.
    Sjøttem E; Andersen C; Johansen T
    J Mol Biol; 1997 Apr; 267(3):490-504. PubMed ID: 9126833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the promoter of human transcription factor Sp3 and evidence of the role of factors Sp1 and Sp3 in the expression of Sp3 protein.
    Lou Z; Maher VM; McCormick JJ
    Gene; 2005 May; 351():51-9. PubMed ID: 15857802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redistribution of transcription start sites within the FMR1 promoter region with expansion of the downstream CGG-repeat element.
    Beilina A; Tassone F; Schwartz PH; Sahota P; Hagerman PJ
    Hum Mol Genet; 2004 Mar; 13(5):543-9. PubMed ID: 14722156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sp1/Sp3 and DNA-methylation contribute to basal transcriptional activation of human podoplanin in MG63 versus Saos-2 osteoblastic cells.
    Hantusch B; Kalt R; Krieger S; Puri C; Kerjaschki D
    BMC Mol Biol; 2007 Mar; 8():20. PubMed ID: 17343736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The NRF-1/alpha-PAL transcription factor regulates human E2F6 promoter activity.
    Kherrouche Z; De Launoit Y; Monte D
    Biochem J; 2004 Nov; 383(Pt. 3):529-36. PubMed ID: 15257658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual promoter structure of ZFP106: regulation by myogenin and nuclear respiratory factor-1.
    Grasberger H; Ye H; Mashima H; Bell GI
    Gene; 2005 Jan; 344():143-59. PubMed ID: 15656981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sp1 and Sp3 activate transcription of the human dopamine transporter gene.
    Wang J; Bannon MJ
    J Neurochem; 2005 Apr; 93(2):474-82. PubMed ID: 15816870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of regulatory elements in the human adipose most abundant gene transcript-1 ( apM-1) promoter: role of SP1/SP3 and TNF-alpha as regulatory pathways.
    Barth N; Langmann T; Schölmerich J; Schmitz G; Schäffler A
    Diabetologia; 2002 Oct; 45(10):1425-33. PubMed ID: 12378384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NF-Y, AP2, Nrf1 and Sp1 regulate the fragile X-related gene 2 (FXR2).
    Mahishi L; Usdin K
    Biochem J; 2006 Dec; 400(2):327-35. PubMed ID: 16886907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription factors of the Sp1 family: interaction with E2F and regulation of the murine thymidine kinase promoter.
    Rotheneder H; Geymayer S; Haidweger E
    J Mol Biol; 1999 Nov; 293(5):1005-15. PubMed ID: 10547281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sp1/Sp3 and the myeloid zinc finger gene MZF1 regulate the human N-cadherin promoter in osteoblasts.
    Le Mée S; Fromigué O; Marie PJ
    Exp Cell Res; 2005 Jan; 302(1):129-42. PubMed ID: 15541732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene regulation by Sp1 and Sp3.
    Li L; He S; Sun JM; Davie JR
    Biochem Cell Biol; 2004 Aug; 82(4):460-71. PubMed ID: 15284899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sp1 and Sp3 function as key regulators of leukotriene C(4) synthase gene expression in the monocyte-like cell line, THP-1.
    Serio KJ; Hodulik CR; Bigby TD
    Am J Respir Cell Mol Biol; 2000 Aug; 23(2):234-40. PubMed ID: 10919991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sp1 and Sp3 transcription factors mediate trichostatin A-induced and basal expression of extracellular superoxide dismutase.
    Zelko IN; Folz RJ
    Free Radic Biol Med; 2004 Oct; 37(8):1256-71. PubMed ID: 15451065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and functional characterization of the mouse tescalcin promoter.
    Perera EM; Bao Y; Kos L; Berkovitz G
    Gene; 2010 Sep; 464(1-2):50-62. PubMed ID: 20540995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic role of specificity proteins and upstream stimulatory factor 1 in transactivation of the mouse carboxylesterase 2/microsomal acylcarnitine hydrolase gene promoter.
    Furihata T; Hosokawa M; Satoh T; Chiba K
    Biochem J; 2004 Nov; 384(Pt 1):101-10. PubMed ID: 15283701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that Sp1 positively and Sp3 negatively regulate and androgen does not directly regulate functional tumor suppressor 15-lipoxygenase 2 (15-LOX2) gene expression in normal human prostate epithelial cells.
    Tang S; Bhatia B; Zhou J; Maldonado CJ; Chandra D; Kim E; Fischer SM; Butler AP; Friedman SL; Tang DG
    Oncogene; 2004 Sep; 23(41):6942-53. PubMed ID: 15247906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.