BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

927 related articles for article (PubMed ID: 15479173)

  • 41. DCEBIO-mediated dilations are attenuated in the female rat middle cerebral artery.
    Sokoya EM; You J; Chen J
    J Vasc Res; 2007; 44(3):169-74. PubMed ID: 17308435
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hyperpolarization of murine small caliber mesenteric arteries by activation of endothelial proteinase-activated receptor 2.
    McGuire JJ; Hollenberg MD; Bennett BM; Triggle CR
    Can J Physiol Pharmacol; 2004 Dec; 82(12):1103-12. PubMed ID: 15644953
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Endothelium-derived hyperpolarizing factor-mediated renal vasodilatory response is impaired during acute and chronic hyperhomocysteinemia.
    De Vriese AS; Blom HJ; Heil SG; Mortier S; Kluijtmans LA; Van de Voorde J; Lameire NH
    Circulation; 2004 May; 109(19):2331-6. PubMed ID: 15117854
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Potassium channel activation, hyperpolarization, and vascular relaxation.
    Siegel G; Walter A; Schnalke F; Schmidt A; Buddecke E; Loirand G; Stock G
    Z Kardiol; 1991; 80 Suppl 7():9-24. PubMed ID: 1724332
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of endothelium-derived hyperpolarizing factor in endothelial dysfunction during diabetes.
    Fitzgerald SM; Kemp-Harper BK; Tare M; Parkington HC
    Clin Exp Pharmacol Physiol; 2005; 32(5-6):482-7. PubMed ID: 15854163
    [TBL] [Abstract][Full Text] [Related]  

  • 46. EDHF: spreading the influence of the endothelium.
    Garland CJ; Hiley CR; Dora KA
    Br J Pharmacol; 2011 Oct; 164(3):839-52. PubMed ID: 21133895
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modulation of endothelial cell KCa3.1 channels during endothelium-derived hyperpolarizing factor signaling in mesenteric resistance arteries.
    Dora KA; Gallagher NT; McNeish A; Garland CJ
    Circ Res; 2008 May; 102(10):1247-55. PubMed ID: 18403729
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of a charybdotoxin-sensitive intermediate conductance Ca2+-activated K+ channel in porcine coronary endothelium: relevance to EDHF.
    Bychkov R; Burnham MP; Richards GR; Edwards G; Weston AH; Félétou M; Vanhoutte PM
    Br J Pharmacol; 2002 Dec; 137(8):1346-54. PubMed ID: 12466245
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Calcium-activated potassium channel and connexin expression in small mesenteric arteries from eNOS-deficient (eNOS-/-) and eNOS-expressing (eNOS+/+) mice.
    Ceroni L; Ellis A; Wiehler WB; Jiang YF; Ding H; Triggle CR
    Eur J Pharmacol; 2007 Apr; 560(2-3):193-200. PubMed ID: 17300779
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of SK(Ca) and IK(Ca) in endothelium-dependent hyperpolarizations of the guinea-pig isolated carotid artery.
    Gluais P; Edwards G; Weston AH; Falck JR; Vanhoutte PM; Félétou M
    Br J Pharmacol; 2005 Feb; 144(4):477-85. PubMed ID: 15655533
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evidence for involvement of both IKCa and SKCa channels in hyperpolarizing responses of the rat middle cerebral artery.
    McNeish AJ; Sandow SL; Neylon CB; Chen MX; Dora KA; Garland CJ
    Stroke; 2006 May; 37(5):1277-82. PubMed ID: 16556879
    [TBL] [Abstract][Full Text] [Related]  

  • 52. C-type natriuretic peptide: a new endothelium-derived hyperpolarizing factor?
    Sandow SL; Tare M
    Trends Pharmacol Sci; 2007 Feb; 28(2):61-7. PubMed ID: 17208309
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Endothelium-dependent hyperpolarizations: past beliefs and present facts.
    Félétou M; Vanhoutte PM
    Ann Med; 2007; 39(7):495-516. PubMed ID: 17852039
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bradykinin-induced relaxation of coronary microarteries: S-nitrosothiols as EDHF?
    Batenburg WW; Popp R; Fleming I; de Vries R; Garrelds IM; Saxena PR; Danser AH
    Br J Pharmacol; 2004 May; 142(1):125-35. PubMed ID: 15066907
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thromboxane receptor stimulation associated with loss of SKCa activity and reduced EDHF responses in the rat isolated mesenteric artery.
    Crane GJ; Garland CJ
    Br J Pharmacol; 2004 May; 142(1):43-50. PubMed ID: 15051624
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Contribution of endothelium-derived hyperpolarizing factors to the regulation of vascular tone in humans.
    Bellien J; Thuillez C; Joannides R
    Fundam Clin Pharmacol; 2008 Aug; 22(4):363-77. PubMed ID: 18705747
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Potassium channels in the peripheral microcirculation.
    Jackson WF
    Microcirculation; 2005; 12(1):113-27. PubMed ID: 15804979
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Parathyroid hypertensive factor inhibits voltage-gated K+ channels in vascular smooth muscle cells.
    Ren J; Zhang L; Benishin CG
    Can J Physiol Pharmacol; 1999 Nov; 77(11):860-5. PubMed ID: 10593658
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Release of C-type natriuretic peptide accounts for the biological activity of endothelium-derived hyperpolarizing factor.
    Chauhan SD; Nilsson H; Ahluwalia A; Hobbs AJ
    Proc Natl Acad Sci U S A; 2003 Feb; 100(3):1426-31. PubMed ID: 12552127
    [TBL] [Abstract][Full Text] [Related]  

  • 60. EDHF is not K+ but may be due to spread of current from the endothelium in guinea pig arterioles.
    Coleman HA; Tare M; Parkington HC
    Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2478-83. PubMed ID: 11356601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 47.