BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 15479527)

  • 1. Minimizing urine autofluorescence under multi-photon excitation conditions.
    Bukowski EJ; Bright FV
    Appl Spectrosc; 2004 Sep; 58(9):1101-5. PubMed ID: 15479527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies to minimize background autofluorescence in live mice during noninvasive fluorescence optical imaging.
    Bhaumik S; DePuy J; Klimash J
    Lab Anim (NY); 2007 Sep; 36(8):40-3. PubMed ID: 17721532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-photon-excited fluorescence imaging of human RPE cells with a femtosecond Ti:Sapphire laser.
    Bindewald-Wittich A; Han M; Schmitz-Valckenberg S; Snyder SR; Giese G; Bille JF; Holz FG
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4553-7. PubMed ID: 17003452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence intensity is a poor predictor of saturation effects in two-photon microscopy: artifacts in fluorescence correlation spectroscopy.
    Wu J; Berland K
    Microsc Res Tech; 2007 Aug; 70(8):682-6. PubMed ID: 17393490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging applications of fluorescence spectroscopy to cellular imaging: lifetime imaging, metal-ligand probes, multi-photon excitation and light quenching.
    Lakowicz JR
    Scanning Microsc Suppl; 1996; 10():213-24. PubMed ID: 9601541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative linear unmixing of CFP and YFP from spectral images acquired with two-photon excitation.
    Thaler C; Vogel SS
    Cytometry A; 2006 Aug; 69(8):904-11. PubMed ID: 16888770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry.
    Telford W; Murga M; Hawley T; Hawley R; Packard B; Komoriya A; Haas F; Hubert C
    Cytometry A; 2005 Nov; 68(1):36-44. PubMed ID: 16163703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Live cell ultraviolet microscopy: a comparison between two- and three-photon excitation.
    Balaji J; Desai R; Maiti S
    Microsc Res Tech; 2004 Jan; 63(1):67-71. PubMed ID: 14677135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study on multi-photon excited fluorescence combined with capillary electrophoresis].
    Sun YX; Zhu F; Ma WY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Apr; 25(4):502-5. PubMed ID: 16097670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution simultaneous three-photon fluorescence and third-harmonic-generation microscopy.
    Chu SW; Tai SP; Ho CL; Lin CH; Sun CK
    Microsc Res Tech; 2005 Mar; 66(4):193-7. PubMed ID: 15889423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limitations arising from two-photon absorption of solvent in pulsed-laser thermal lens detection: determination of the two-photon absorption coefficient of ethanol at 266 nm.
    Abbas Ghaleb K; Georges J
    Appl Spectrosc; 2006 Jan; 60(1):86-8. PubMed ID: 16454917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saturation modified point spread functions in two-photon microscopy.
    Cianci GC; Wu J; Berland KM
    Microsc Res Tech; 2004 Jun; 64(2):135-41. PubMed ID: 15352084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiphoton excitation of autofluorescence for microscopy of glioma tissue.
    Leppert J; Krajewski J; Kantelhardt SR; Schlaffer S; Petkus N; Reusche E; Hüttmann G; Giese A
    Neurosurgery; 2006 Apr; 58(4):759-67; discussion 759-67. PubMed ID: 16575340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinctive autofluorescence of urine samples from individuals with bacteriuria compared with normals.
    Anwer AG; Sandeep PM; Goldys EM; Vemulpad S
    Clin Chim Acta; 2009 Mar; 401(1-2):73-5. PubMed ID: 19087871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress.
    König K; So PT; Mantulin WW; Tromberg BJ; Gratton E
    J Microsc; 1996 Sep; 183(Pt 3):197-204. PubMed ID: 8858857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-photon excitation induced fluorescence of a trifluorophore-labeled DNA.
    Jockusch S; Li Z; Ju J; Turro NJ
    Photochem Photobiol; 2005; 81(2):238-41. PubMed ID: 15656709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser-induced autofluorescence spectroscopy of dental caries.
    König K; Flemming G; Hibst R
    Cell Mol Biol (Noisy-le-grand); 1998 Dec; 44(8):1293-300. PubMed ID: 9874516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral characteristics of autofluorescence and second harmonic generation from ex vivo human skin induced by femtosecond laser and visible lasers.
    Chen J; Zhuo S; Luo T; Jiang X; Zhao J
    Scanning; 2006; 28(6):319-26. PubMed ID: 17181133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The autofluorescence of plastic materials and chips measured under laser irradiation.
    Piruska A; Nikcevic I; Lee SH; Ahn C; Heineman WR; Limbach PA; Seliskar CJ
    Lab Chip; 2005 Dec; 5(12):1348-54. PubMed ID: 16286964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-photon autofluorescence microscopy and spectroscopy of Antarctic fungus: new approach for studying effects of UV-B irradiation.
    Arcangeli C; Yu W; Cannistraro S; Gratton E
    Biopolymers; 2000; 57(4):218-25. PubMed ID: 10861386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.