BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

960 related articles for article (PubMed ID: 15479644)

  • 1. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice.
    Cai D; Frantz JD; Tawa NE; Melendez PA; Oh BC; Lidov HG; Hasselgren PO; Frontera WR; Lee J; Glass DJ; Shoelson SE
    Cell; 2004 Oct; 119(2):285-98. PubMed ID: 15479644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre-cachexia in patients with stages I-III non-small cell lung cancer: systemic inflammation and functional impairment without activation of skeletal muscle ubiquitin proteasome system.
    Op den Kamp CM; Langen RC; Minnaard R; Kelders MC; Snepvangers FJ; Hesselink MK; Dingemans AC; Schols AM
    Lung Cancer; 2012 Apr; 76(1):112-7. PubMed ID: 22018880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C26 cancer-induced muscle wasting is IKKβ-dependent and NF-kappaB-independent.
    Cornwell EW; Mirbod A; Wu CL; Kandarian SC; Jackman RW
    PLoS One; 2014; 9(1):e87776. PubMed ID: 24489962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Luteolin reduces cancer‑induced skeletal and cardiac muscle atrophy in a Lewis lung cancer mouse model.
    Chen T; Li B; Xu Y; Meng S; Wang Y; Jiang Y
    Oncol Rep; 2018 Aug; 40(2):1129-1137. PubMed ID: 29845270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted ablation of the cellular inhibitor of apoptosis 1 (cIAP1) attenuates denervation-induced skeletal muscle atrophy.
    Lala-Tabbert N; Lejmi-Mrad R; Timusk K; Fukano M; Holbrook J; St-Jean M; LaCasse EC; Korneluk RG
    Skelet Muscle; 2019 May; 9(1):13. PubMed ID: 31126323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse atrophy.
    Hunter RB; Stevenson E; Koncarevic A; Mitchell-Felton H; Essig DA; Kandarian SC
    FASEB J; 2002 Apr; 16(6):529-38. PubMed ID: 11919155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice.
    Paul PK; Gupta SK; Bhatnagar S; Panguluri SK; Darnay BG; Choi Y; Kumar A
    J Cell Biol; 2010 Dec; 191(7):1395-411. PubMed ID: 21187332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigallocatechin-3-gallate effectively attenuates skeletal muscle atrophy caused by cancer cachexia.
    Wang H; Lai YJ; Chan YL; Li TL; Wu CJ
    Cancer Lett; 2011 Jun; 305(1):40-9. PubMed ID: 21397390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is there a common mechanism linking muscle wasting in various disease types?
    Tisdale MJ
    Curr Opin Support Palliat Care; 2007 Dec; 1(4):287-92. PubMed ID: 18685377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role for IkappaBalpha, but not c-Rel, in skeletal muscle atrophy.
    Judge AR; Koncarevic A; Hunter RB; Liou HC; Jackman RW; Kandarian SC
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C372-82. PubMed ID: 16928772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB.
    Cai D; Yuan M; Frantz DF; Melendez PA; Hansen L; Lee J; Shoelson SE
    Nat Med; 2005 Feb; 11(2):183-90. PubMed ID: 15685173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of PARP activity in lung cancer-induced cachexia: Effects on muscle oxidative stress, proteolysis, anabolic markers, and phenotype.
    Chacon-Cabrera A; Mateu-Jimenez M; Langohr K; Fermoselle C; García-Arumí E; Andreu AL; Yelamos J; Barreiro E
    J Cell Physiol; 2017 Dec; 232(12):3744-3761. PubMed ID: 28177129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle Wasting in Fasting Requires Activation of NF-κB and Inhibition of AKT/Mechanistic Target of Rapamycin (mTOR) by the Protein Acetylase, GCN5.
    Lee D; Goldberg AL
    J Biol Chem; 2015 Dec; 290(51):30269-79. PubMed ID: 26515065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-noncoding RNA Atrolnc-1 promotes muscle wasting in mice with chronic kidney disease.
    Sun L; Si M; Liu X; Choi JM; Wang Y; Thomas SS; Peng H; Hu Z
    J Cachexia Sarcopenia Muscle; 2018 Oct; 9(5):962-974. PubMed ID: 30043444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TNF-related weak inducer of apoptosis (TWEAK) is a potent skeletal muscle-wasting cytokine.
    Dogra C; Changotra H; Wedhas N; Qin X; Wergedal JE; Kumar A
    FASEB J; 2007 Jun; 21(8):1857-69. PubMed ID: 17314137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced sucrose nonfermenting AMPK-related kinase (SNARK) activity aggravates cancer-induced skeletal muscle wasting.
    Alves CRR; MacDonald TL; Nigro P; Pathak P; Hirshman MF; Goodyear LJ; Lessard SJ
    Biomed Pharmacother; 2019 Sep; 117():109197. PubMed ID: 31387190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein therapy of skeletal muscle atrophy and mechanism by angiogenic factor AGGF1.
    He Z; Song Q; Yu Y; Liu F; Zhao J; Un W; Da X; Xu C; Yao Y; Wang QK
    J Cachexia Sarcopenia Muscle; 2023 Apr; 14(2):978-991. PubMed ID: 36696895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antiapoptotic effect of serum and glucocorticoid-inducible protein kinase is mediated by novel mechanism activating I{kappa}B kinase.
    Zhang L; Cui R; Cheng X; Du J
    Cancer Res; 2005 Jan; 65(2):457-64. PubMed ID: 15695387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The TWEAK-Fn14 system is a critical regulator of denervation-induced skeletal muscle atrophy in mice.
    Mittal A; Bhatnagar S; Kumar A; Lach-Trifilieff E; Wauters S; Li H; Makonchuk DY; Glass DJ; Kumar A
    J Cell Biol; 2010 Mar; 188(6):833-49. PubMed ID: 20308426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacological strategies in lung cancer-induced cachexia: effects on muscle proteolysis, autophagy, structure, and weakness.
    Chacon-Cabrera A; Fermoselle C; Urtreger AJ; Mateu-Jimenez M; Diament MJ; de Kier Joffé ED; Sandri M; Barreiro E
    J Cell Physiol; 2014 Nov; 229(11):1660-72. PubMed ID: 24615622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.