These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 15479783)

  • 1. Empirical evaluation of data transformations and ranking statistics for microarray analysis.
    Qin LX; Kerr KF;
    Nucleic Acids Res; 2004; 32(18):5471-9. PubMed ID: 15479783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The statistics of identifying differentially expressed genes in Expresso and TM4: a comparison.
    Sioson AA; Mane SP; Li P; Sha W; Heath LS; Bohnert HJ; Grene R
    BMC Bioinformatics; 2006 Apr; 7():215. PubMed ID: 16626497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying differentially expressed genes from microarray experiments via statistic synthesis.
    Yang YH; Xiao Y; Segal MR
    Bioinformatics; 2005 Apr; 21(7):1084-93. PubMed ID: 15513985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methodological study of affine transformations of gene expression data with proposed robust non-parametric multi-dimensional normalization method.
    Bengtsson H; Hössjer O
    BMC Bioinformatics; 2006 Mar; 7():100. PubMed ID: 16509971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-processing Agilent microarray data.
    Zahurak M; Parmigiani G; Yu W; Scharpf RB; Berman D; Schaeffer E; Shabbeer S; Cope L
    BMC Bioinformatics; 2007 May; 8():142. PubMed ID: 17472750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pre-processing of microarray data and analysis of differential expression.
    Durinck S
    Methods Mol Biol; 2008; 452():89-110. PubMed ID: 18563370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ranking analysis for identifying differentially expressed genes.
    Qi Y; Sun H; Sun Q; Pan L
    Genomics; 2011 May; 97(5):326-9. PubMed ID: 21402142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A friendly statistics package for microarray analysis.
    Sykacek P; Furlong RA; Micklem G
    Bioinformatics; 2005 Nov; 21(21):4069-70. PubMed ID: 16188932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of DNA microarray data transformation on gene expression analysis - comparison of two normalization methods.
    Schmidt MT; Handschuh L; Zyprych J; Szabelska A; Olejnik-Schmidt AK; Siatkowski I; Figlerowicz M
    Acta Biochim Pol; 2011; 58(4):573-80. PubMed ID: 22187680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of normalization on the correlation structure of microarray data.
    Qiu X; Brooks AI; Klebanov L; Yakovlev N
    BMC Bioinformatics; 2005 May; 6():120. PubMed ID: 15904488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new outlier removal approach for cDNA microarray normalization.
    Wu Y; Yan L; Liu H; Sun H; Xie H
    Biotechniques; 2009 Aug; 47(2):691-2, 694-700. PubMed ID: 19737130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust gene selection methods using weighting schemes for microarray data analysis.
    Kang S; Song J
    BMC Bioinformatics; 2017 Sep; 18(1):389. PubMed ID: 28865426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross platform microarray analysis for robust identification of differentially expressed genes.
    Bosotti R; Locatelli G; Healy S; Scacheri E; Sartori L; Mercurio C; Calogero R; Isacchi A
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S5. PubMed ID: 17430572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sample size for detecting differentially expressed genes in microarray experiments.
    Wei C; Li J; Bumgarner RE
    BMC Genomics; 2004 Nov; 5():87. PubMed ID: 15533245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Profound effect of normalization on detection of differentially expressed genes in oligonucleotide microarray data analysis.
    Hoffmann R; Seidl T; Dugas M
    Genome Biol; 2002 Jun; 3(7):RESEARCH0033. PubMed ID: 12184807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sample size calculations based on ranking and selection in microarray experiments.
    Matsui S; Zeng S; Yamanaka T; Shaughnessy J
    Biometrics; 2008 Mar; 64(1):217-26. PubMed ID: 17680829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microarray Data Analysis Toolbox (MDAT): for normalization, adjustment and analysis of gene expression data.
    Knowlton N; Dozmorov IM; Centola M
    Bioinformatics; 2004 Dec; 20(18):3687-90. PubMed ID: 15271778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Empirical Bayes ranking and selection methods via semiparametric hierarchical mixture models in microarray studies.
    Noma H; Matsui S
    Stat Med; 2013 May; 32(11):1904-16. PubMed ID: 23281021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ArrayNorm: comprehensive normalization and analysis of microarray data.
    Pieler R; Sanchez-Cabo F; Hackl H; Thallinger GG; Trajanoski Z
    Bioinformatics; 2004 Aug; 20(12):1971-3. PubMed ID: 15073026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of null statistics in permutation-based multiple testing for multi-factorial microarray experiments.
    Gao X
    Bioinformatics; 2006 Jun; 22(12):1486-94. PubMed ID: 16574697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.