BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

545 related articles for article (PubMed ID: 15480493)

  • 21. Evaluation of the approach to respirable quartz exposure control in U.S. coal mines.
    Joy GJ
    J Occup Environ Hyg; 2012; 9(2):65-8. PubMed ID: 22181563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diesel Exhaust Exposure Assessment Among Tunnel Construction Workers-Correlations Between Nitrogen Dioxide, Respirable Elemental Carbon, and Particle Number.
    Hedmer M; Wierzbicka A; Li H; Albin M; Tinnerberg H; Broberg K
    Ann Work Expo Health; 2017 Jun; 61(5):539-553. PubMed ID: 28371844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison between personal sampling methodologies for evaluating diesel particulate matter exposures in mines: submicron total carbon corrected for the adsorption of vapor-phase organic carbon vs. respirable total carbon.
    Fleck A; Cabelguen V; Couture C; Lachapelle G; Ryan P; Thuot R; Debia M
    J Occup Environ Hyg; 2019 Jan; 16(1):1-5. PubMed ID: 30285551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Respirable dust exposures in U.S. surface coal mines (1982-1986).
    Piacitelli GM; Amandus HE; Dieffenbach A
    Arch Environ Health; 1990; 45(4):202-9. PubMed ID: 2169228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High exposure to respirable dust and quartz in a labour-intensive coal mine in Tanzania.
    Mamuya SH; Bråtveit M; Mwaiselage J; Mashalla YJ; Moen BE
    Ann Occup Hyg; 2006 Mar; 50(2):197-204. PubMed ID: 16143714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of coal mine dust size distributions and calibration standards for crystalline silica analysis.
    Page SJ
    AIHA J (Fairfax, Va); 2003; 64(1):30-9. PubMed ID: 12570393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust.
    Barone TL; Patts JR; Janisko SJ; Colinet JF; Patts LD; Beck TW; Mischler SE
    J Occup Environ Hyg; 2016; 13(4):284-92. PubMed ID: 26618374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of the respirable dust levels in the nation's underground and surface coal mining operations.
    Parobeck PS; Jankowski RA
    Am Ind Hyg Assoc J; 1979 Oct; 40(10):910-5. PubMed ID: 525618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The derivation of estimated dust exposures for U.S. coal miners working before 1970.
    Attfield MD; Morring K
    Am Ind Hyg Assoc J; 1992 Apr; 53(4):248-55. PubMed ID: 1529917
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organic carbon and elemental carbon associated with PM(10) in Beijing during spring time.
    Zhang R; Ho KF; Cao J; Han Z; Zhang M; Cheng Y; Lee SC
    J Hazard Mater; 2009 Dec; 172(2-3):970-7. PubMed ID: 19733974
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of PM2.5 carbon measurement methods in Hong Kong, China.
    Chow JC; Watson JG; Louie PK; Chen LW; Sin D
    Environ Pollut; 2005 Sep; 137(2):334-44. PubMed ID: 15963372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulatory implications of airborne respirable free silica variability in underground coal mines.
    Villnave JM; Corn M; Francis M; Hall TA
    Am Ind Hyg Assoc J; 1991 Mar; 52(3):107-12. PubMed ID: 1851384
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling and source apportionment of diesel particulate matter.
    Díaz-Robles LA; Fu JS; Reed GD
    Environ Int; 2008 Jan; 34(1):1-11. PubMed ID: 17617463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Consideration of kaolinite interference correction for quartz measurements in coal mine dust.
    Lee T; Chisholm WP; Kashon M; Key-Schwartz RJ; Harper M
    J Occup Environ Hyg; 2013; 10(8):425-34. PubMed ID: 23767881
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exposure to dust and particle-associated 1-nitropyrene of drivers of diesel-powered equipment in underground mining.
    Scheepers PT; Micka V; Muzyka V; Anzion R; Dahmann D; Poole J; Bos RP
    Ann Occup Hyg; 2003 Jul; 47(5):379-88. PubMed ID: 12855488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determining the spatial variability of personal sampler inlet locations.
    Vinson R; Volkwein J; McWilliams L
    J Occup Environ Hyg; 2007 Sep; 4(9):708-14. PubMed ID: 17654226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Respirable coal mine dust in underground mines, United States, 1982-2017.
    Doney BC; Blackley D; Hale JM; Halldin C; Kurth L; Syamlal G; Laney AS
    Am J Ind Med; 2019 Jun; 62(6):478-485. PubMed ID: 31033017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A critique of MSHA procedures for determination of permissible respirable coal mine dust containing free silica.
    Corn M; Breysse P; Hall T; Chen G; Risby T; Swift DL
    Am Ind Hyg Assoc J; 1985 Jan; 46(1):4-8. PubMed ID: 2992262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of coarse coal dust sampling techniques in a laboratory-simulated longwall section.
    Patts JR; Barone TL
    J Occup Environ Hyg; 2017 May; 14(5):323-334. PubMed ID: 27792474
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.