BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 15480602)

  • 1. "Dark" (compacted) neurons may not die through the necrotic pathway.
    Gallyas F; Csordás A; Schwarcz A; Mázló M
    Exp Brain Res; 2005 Jan; 160(4):473-86. PubMed ID: 15480602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Debris of "dark" (compacted) neurones are removed from an otherwise undamaged environment mainly by astrocytes via blood vessels.
    Mázló M; Gasz B; Szigeti A; Zsombok A; Gallyas F
    J Neurocytol; 2004 Sep; 33(5):557-67. PubMed ID: 15906162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery versus death of "dark" (compacted) neurons in non-impaired parenchymal environment: light and electron microscopic observations.
    Csordás A; Mázló M; Gallyas F
    Acta Neuropathol; 2003 Jul; 106(1):37-49. PubMed ID: 12665989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mode of death of epilepsy-induced "dark" neurons is neither necrosis nor apoptosis: an electron-microscopic study.
    Gallyas F; Kiglics V; Baracskay P; Juhász G; Czurkó A
    Brain Res; 2008 Nov; 1239():207-15. PubMed ID: 18801347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basophilia, acidophilia and argyrophilia of "dark" (compacted) neurons during their formation, recovery or death in an otherwise undamaged environment.
    Zsombok A; Tóth Z; Gallyas F
    J Neurosci Methods; 2005 Mar; 142(1):145-52. PubMed ID: 15652628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fate of "dark" neurons produced by transient focal cerebral ischemia in a non-necrotic and non-excitotoxic environment: neurobiological aspects.
    Kövesdi E; Pál J; Gallyas F
    Brain Res; 2007 May; 1147():272-83. PubMed ID: 17349980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructural pathology of degenerating "dark" granule cells in the hippocampal dentate gyrus of adrenalectomized rats.
    Liposits Z; Kalló I; Hrabovszky E; Gallyas F
    Acta Biol Hung; 1997; 48(2):173-87. PubMed ID: 9404541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Argyrophilic dark neurons represent various states of neuronal damage in brain insults: some come to die and others survive.
    Ishida K; Shimizu H; Hida H; Urakawa S; Ida K; Nishino H
    Neuroscience; 2004; 125(3):633-44. PubMed ID: 15099677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The temporal evolution of hypoglycemic brain damage. I. Light- and electron-microscopic findings in the rat cerebral cortex.
    Auer RN; Kalimo H; Olsson Y; Siesjö BK
    Acta Neuropathol; 1985; 67(1-2):13-24. PubMed ID: 4024866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kainic acid-induced seizures produce necrotic, not apoptotic, neurons with internucleosomal DNA cleavage: implications for programmed cell death mechanisms.
    Fujikawa DG; Shinmei SS; Cai B
    Neuroscience; 2000; 98(1):41-53. PubMed ID: 10858610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural identification of dentate granule cell death from pilocarpine-induced seizures.
    Covolan L; Smith RL; Mello LE
    Epilepsy Res; 2000 Aug; 41(1):9-21. PubMed ID: 10924864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mild as well as severe insults produce necrotic, not apoptotic, cells: evidence from 60-min seizures.
    Fujikawa DG; Zhao S; Ke X; Shinmei SS; Allen SG
    Neurosci Lett; 2010 Jan; 469(3):333-7. PubMed ID: 20026247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degeneration of astrocytic processes and their mitochondria in cerebral cortical regions peripheral to the cortical infarction: heterogeneity of their disintegration is closely associated with disseminated selective neuronal necrosis and maturation of injury.
    Ito U; Hakamata Y; Kawakami E; Oyanagi K
    Stroke; 2009 Jun; 40(6):2173-81. PubMed ID: 19359621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective loss of hilar neurons and impairment of initial learning in rats after repeated administration of electroconvulsive shock seizures.
    Lukoyanov NV; Sá MJ; Madeira MD; Paula-Barbosa MM
    Exp Brain Res; 2004 Jan; 154(2):192-200. PubMed ID: 14557909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron microscopic investigation of rat brain after brief cardiac arrest.
    Hossmann KA; Oschlies U; Schwindt W; Krep H
    Acta Neuropathol; 2001 Feb; 101(2):101-13. PubMed ID: 11271364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructural characteristics of necrotic and apoptotic mode of neuronal cell death in a model of anoxia in vitro.
    Nagańska E; Matyja E
    Folia Neuropathol; 2001; 39(3):129-39. PubMed ID: 11770123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Status epilepticus severity influences the long-term outcome of neurogenesis in the adult dentate gyrus.
    Mohapel P; Ekdahl CT; Lindvall O
    Neurobiol Dis; 2004 Mar; 15(2):196-205. PubMed ID: 15006689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium-pilocarpine-induced status epilepticus produces necrotic neurons with internucleosomal DNA fragmentation in adult rats.
    Fujikawa DG; Shinmei SS; Cai B
    Eur J Neurosci; 1999 May; 11(5):1605-14. PubMed ID: 10215913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of synapses in the entorhinal-dentate gyrus pathway following repeated induction of electroshock seizures in the rat.
    Cardoso A; Assunção M; Andrade JP; Pereira PA; Madeira MD; Paula-Barbosa MM; Lukoyanov NV
    J Neurosci Res; 2008 Jan; 86(1):71-83. PubMed ID: 17705293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of astrocytes and microglia in seizure-induced aberrant neurogenesis in the hippocampus of adult rats.
    Yang F; Liu ZR; Chen J; Zhang SJ; Quan QY; Huang YG; Jiang W
    J Neurosci Res; 2010 Feb; 88(3):519-29. PubMed ID: 19774666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.