These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
353 related articles for article (PubMed ID: 15480646)
1. High signal intensity of intervertebral calcified disks on T1-weighted MR images resulting from fat content. Malghem J; Lecouvet FE; François R; Vande Berg BC; Duprez T; Cosnard G; Maldague BE Skeletal Radiol; 2005 Feb; 34(2):80-6. PubMed ID: 15480646 [TBL] [Abstract][Full Text] [Related]
2. Calcification demonstrated as high signal intensity on T1-weighted MR images of the disks of the lumbar spine. Major NM; Helms CA; Genant HK Radiology; 1993 Nov; 189(2):494-6. PubMed ID: 8210379 [TBL] [Abstract][Full Text] [Related]
4. Does the high-intensity zone (HIZ) of lumbar Intervertebral discs always represent an annular fissure? Shan Z; Chen H; Liu J; Ren H; Zhang X; Zhao F Eur Radiol; 2017 Mar; 27(3):1267-1276. PubMed ID: 27260341 [TBL] [Abstract][Full Text] [Related]
5. High-resolution MR imaging of sequestered lumbar intervertebral disks. Masaryk TJ; Ross JS; Modic MT; Boumphrey F; Bohlman H; Wilber G AJR Am J Roentgenol; 1988 May; 150(5):1155-62. PubMed ID: 3258720 [TBL] [Abstract][Full Text] [Related]
6. MR imaging characteristics of tuberculous spondylitis vs vertebral osteomyelitis. Smith AS; Weinstein MA; Mizushima A; Coughlin B; Hayden SP; Lakin MM; Lanzieri CF AJR Am J Roentgenol; 1989 Aug; 153(2):399-405. PubMed ID: 2750627 [TBL] [Abstract][Full Text] [Related]
7. Marginal erosive discovertebral "Romanus" lesions in ankylosing spondylitis demonstrated by contrast enhanced Gd-DTPA magnetic resonance imaging. Jevtic V; Kos-Golja M; Rozman B; McCall I Skeletal Radiol; 2000 Jan; 29(1):27-33. PubMed ID: 10663586 [TBL] [Abstract][Full Text] [Related]
8. Feasibility of fat-saturated T2-weighted magnetic resonance imaging with slice encoding for metal artifact correction (SEMAC) at 3T. Lee YH; Lim D; Kim E; Kim S; Song HT; Suh JS Magn Reson Imaging; 2014 Oct; 32(8):1001-5. PubMed ID: 24925839 [TBL] [Abstract][Full Text] [Related]
9. Vacuum disc: frequency of high signal intensity on T2-weighted MR images. Schweitzer ME; el-Noueam KI Skeletal Radiol; 1998 Feb; 27(2):83-6. PubMed ID: 9526773 [TBL] [Abstract][Full Text] [Related]
10. Effects of chemonucleolysis demonstrated by MR imaging. Masaryk TJ; Boumphrey F; Modic MT; Tamborrello C; Ross JS; Brown MD J Comput Assist Tomogr; 1986; 10(6):917-23. PubMed ID: 3782560 [TBL] [Abstract][Full Text] [Related]
11. Magnetic resonance myelography evaluation of the lumbar spine end plates and intervertebral disks. Mollà E; Martí-Bonmatí L; Arana E; Martinez-Bisbal MC; Costa S Acta Radiol; 2005 Feb; 46(1):83-8. PubMed ID: 15841744 [TBL] [Abstract][Full Text] [Related]
12. MR diskography and CT diskography with gadodiamide-iodinated contrast mixture for the diagnosis of foraminal impingement. Myung JS; Lee JW; Park GW; Yeom JS; Choi JY; Hong SH; Kang HS AJR Am J Roentgenol; 2008 Sep; 191(3):710-5. PubMed ID: 18716097 [TBL] [Abstract][Full Text] [Related]
13. The bright intervertebral disk: an indirect sign of abnormal spinal bone marrow on T1-weighted MR images. Castillo M; Malko JA; Hoffman JC AJNR Am J Neuroradiol; 1990; 11(1):23-6. PubMed ID: 2105612 [TBL] [Abstract][Full Text] [Related]
14. Assessment of apparent diffusion coefficient in normal and degenerated intervertebral lumbar disks: initial experience. Kealey SM; Aho T; Delong D; Barboriak DP; Provenzale JM; Eastwood JD Radiology; 2005 May; 235(2):569-74. PubMed ID: 15798157 [TBL] [Abstract][Full Text] [Related]
15. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Modic MT; Steinberg PM; Ross JS; Masaryk TJ; Carter JR Radiology; 1988 Jan; 166(1 Pt 1):193-9. PubMed ID: 3336678 [TBL] [Abstract][Full Text] [Related]
16. Comparison of MR and diskography in detecting radial tears of the anulus: a postmortem study. Yu SW; Haughton VM; Sether LA; Wagner M AJNR Am J Neuroradiol; 1989; 10(5):1077-81. PubMed ID: 2505523 [TBL] [Abstract][Full Text] [Related]
17. Morphology of the cartilaginous endplates in human intervertebral disks with ultrashort echo time MR imaging. Bae WC; Statum S; Zhang Z; Yamaguchi T; Wolfson T; Gamst AC; Du J; Bydder GM; Masuda K; Chung CB Radiology; 2013 Feb; 266(2):564-74. PubMed ID: 23192776 [TBL] [Abstract][Full Text] [Related]
18. Magnetic resonance imaging and axial involvement in spondylarthropathies. Delineation of the spinal entheses. Marc V; Dromer C; Le Guennec P; Manelfe C; Fournie B Rev Rhum Engl Ed; 1997; 64(7-9):465-73. PubMed ID: 9338928 [TBL] [Abstract][Full Text] [Related]
19. Long-term surgical outcome and risk factors in patients with cervical myelopathy and a change in signal intensity of intramedullary spinal cord on Magnetic Resonance imaging. Yagi M; Ninomiya K; Kihara M; Horiuchi Y J Neurosurg Spine; 2010 Jan; 12(1):59-65. PubMed ID: 20043766 [TBL] [Abstract][Full Text] [Related]
20. New bone formation in the intervertebral joint space in spondyloarthritis: An MRI study. Laloo F; Herregods N; Jaremko JL; Carron P; Elewaut D; Van den Bosch F; Verstraete K; Jans L Eur J Radiol; 2018 Dec; 109():210-217. PubMed ID: 30527307 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]