These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 15480686)

  • 21. High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system.
    Miller M; Tagliani L; Wang N; Berka B; Bidney D; Zhao ZY
    Transgenic Res; 2002 Aug; 11(4):381-96. PubMed ID: 12212841
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient production of transgenic melon via Agrobacterium-mediated transformation.
    Bezirganoglu I; Hwang SY; Shaw JF; Fang TJ
    Genet Mol Res; 2014 Apr; 13(2):3218-27. PubMed ID: 24841654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regeneration of transgenic plants from two indica rice (Oryza sativa L.) cultivars using shoot apex explants.
    Arockiasamy S; Ignacimuthu S
    Plant Cell Rep; 2007 Oct; 26(10):1745-53. PubMed ID: 17593368
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Agrobacterium-mediated transformation of cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis).
    Zhang FL; Takahata Y; Watanabe M; Xu JB
    Plant Cell Rep; 2000 May; 19(6):569-575. PubMed ID: 30754819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom.
    Chetty VJ; Ceballos N; Garcia D; Narváez-Vásquez J; Lopez W; Orozco-Cárdenas ML
    Plant Cell Rep; 2013 Feb; 32(2):239-47. PubMed ID: 23099543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stable genetic transformation of Vigna mungo L. Hepper via Agrobacterium tumefaciens.
    Saini R; Sonia ; Jaiwal PK
    Plant Cell Rep; 2003 Jun; 21(9):851-9. PubMed ID: 12789502
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transformation of the monocotyledonous Alstroemeria by Agrobacterium tumefaciens.
    Akutsu M; Ishizaki T; Sato H
    Plant Cell Rep; 2004 Mar; 22(8):561-8. PubMed ID: 14615906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium.
    Khanna HK; Daggard GE
    Plant Cell Rep; 2003 Jan; 21(5):429-36. PubMed ID: 12789445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of transgenic lily plants by Agrobacterium-mediated transformation.
    Hoshi Y; Kondo M; Mori S; Adachi Y; Nakano M; Kobayashi H
    Plant Cell Rep; 2004 Jan; 22(6):359-64. PubMed ID: 14685763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic transformation of peanut (Arachis hypogaea L.) using cotyledonary node as explant and a promoterless gus::nptII fusion gene based vector.
    Anuradha TS; Jami SK; Datla RS; Kirti PB
    J Biosci; 2006 Jun; 31(2):235-46. PubMed ID: 16809856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient soybean regeneration and Agrobacterium-mediated transformation using a whole cotyledonary node as an explant.
    Zhang F; Chen C; Ge H; Liu J; Luo Y; Liu K; Chen L; Xu K; Zhang Y; Tan G; Li C
    Biotechnol Appl Biochem; 2014; 61(5):620-5. PubMed ID: 24974933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Factors influencing Agrobacterium-mediated cotyledonary-node transformation of soybean (Glycine max L.)].
    Liu SJ; Huang JQ; Wei ZM
    Fen Zi Xi Bao Sheng Wu Xue Bao; 2007 Oct; 40(5):286-94. PubMed ID: 18254332
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Induction of competent cells for Agrobacterium tumefaciens-mediated stable transformation of common bean (Phaseolus vulgaris L.).
    Song GQ; Han X; Wiersma AT; Zong X; Awale HE; Kelly JD
    PLoS One; 2020; 15(3):e0229909. PubMed ID: 32134988
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Agrobacterium-mediated genetic transformation of Perilla frutescens.
    Kim KH; Lee YH; Kim D; Park YH; Lee JY; Hwang YS; Kim YH
    Plant Cell Rep; 2004 Nov; 23(6):386-90. PubMed ID: 15368075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Agrobacterium tumefaciens-mediated transformation of Campanula carpatica: factors affecting transformation and regeneration of transgenic shoots.
    Sriskandarajah S; Frello S; Jørgensen K; Serek M
    Plant Cell Rep; 2004 Aug; 23(1-2):59-63. PubMed ID: 15114492
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transformation of Montmorency sour cherry (Prunus cerasus L.) and Gisela 6 (P. cerasus x P. canescens) cherry rootstock mediated by Agrobacterium tumefaciens.
    Song GQ; Sink KC
    Plant Cell Rep; 2006 Mar; 25(2):117-23. PubMed ID: 16369768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimisation of tomato Micro-tom regeneration and selection on glufosinate/Basta and dependency of gene silencing on transgene copy number.
    Khuong TT; Crété P; Robaglia C; Caffarri S
    Plant Cell Rep; 2013 Sep; 32(9):1441-54. PubMed ID: 23673466
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of efficient plant regeneration and transformation system for impatiens using Agrobacterium tumefaciens and multiple bud cultures as explants.
    Dan Y; Baxter A; Zhang S; Pantazis CJ; Veilleux RE
    BMC Plant Biol; 2010 Aug; 10():165. PubMed ID: 20696066
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of polyamines and silver nitrate on the high frequency regeneration from cotyledon explants of bottle gourd (Lagenaria siceraria; sp. asiatica).
    Shyamali S; Hattori K
    Pak J Biol Sci; 2007 Apr; 10(8):1288-93. PubMed ID: 19069930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of selectable marker-free transgenic tobacco plants using a non-selection approach: chimerism or escape, transgene inheritance, and efficiency.
    Li B; Xie C; Qiu H
    Plant Cell Rep; 2009 Mar; 28(3):373-86. PubMed ID: 19018535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.