These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 15480686)

  • 41. Stable integration and expression of wasabi defensin gene in "Egusi" melon (Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternaria leaf spot.
    Ntui VO; Thirukkumaran G; Azadi P; Khan RS; Nakamura I; Mii M
    Plant Cell Rep; 2010 Sep; 29(9):943-54. PubMed ID: 20552202
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tissue Culture- and Selection-Independent Agrobacterium tumefaciens-Mediated Transformation of a Recalcitrant Grain Legume, Cowpea (Vigna unguiculata L. Walp).
    Kumar A; Sainger M; Jaiwal R; Chaudhary D; Jaiwal PK
    Mol Biotechnol; 2021 Aug; 63(8):710-718. PubMed ID: 33987815
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimization of Agrobacterium-mediated transformation in spring bread wheat using mature and immature embryos.
    Kumar R; Mamrutha HM; Kaur A; Venkatesh K; Sharma D; Singh GP
    Mol Biol Rep; 2019 Apr; 46(2):1845-1853. PubMed ID: 30707418
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genetic transformation and regeneration of Sesbania drummondii using cotyledonary nodes.
    Padmanabhan P; Sahi SV
    Plant Cell Rep; 2009 Jan; 28(1):31-40. PubMed ID: 18825383
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Use of a herbicide or lysine plus threonine for non-antibiotic selection of transgenic chickpea.
    Tewari-Singh N; Sen J; Kiesecker H; Reddy VS; Jacobsen HJ; Guha-Mukherjee S
    Plant Cell Rep; 2004 Mar; 22(8):576-83. PubMed ID: 14749891
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Establishment of regeneration and transformation system in Egyptian sesame (Sesamum indicum L.) cv Sohag 1.
    Al-Shafeay AF; Ibrahim AS; Nesiem MR; Tawfik MS
    GM Crops; 2011; 2(3):182-92. PubMed ID: 22179191
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Agrobacterium tumefaciens mediated transformation of Orychophragmus violaceus cotyledon and regeneration of transgenic plants.
    Zhou J; Wei Z; Xu Z; Liu S; Luo P
    Chin J Biotechnol; 1996; 12(1):39-45. PubMed ID: 8877113
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plant regeneration and Agrobacterium-mediated transformation of cotyledon explants of Citrullus colocynthis (L.) Schrad.
    Dabauza M; Bordas M; Salvador A; Roig LA; Moreno V
    Plant Cell Rep; 1997 Oct; 16(12):888-892. PubMed ID: 30727599
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genetic transformation of NERICA, interspecific hybrid rice between Oryza glaberrima and O. sativa, mediated by Agrobacterium tumefaciens.
    Ishizaki T; Kumashiro T
    Plant Cell Rep; 2008 Feb; 27(2):319-27. PubMed ID: 17934736
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of genetic transformation in Morus alba L. via different regeneration systems.
    Agarwal S; Kanwar K
    Plant Cell Rep; 2007 Feb; 26(2):177-85. PubMed ID: 16951950
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Agrobacterium tumefaciens-mediated creeping bentgrass (Agrostis stolonifera L.) transformation using phosphinothricin selection results in a high frequency of single-copy transgene integration.
    Luo H; Hu Q; Nelson K; Longo C; Kausch AP; Chandlee JM; Wipff JK; Fricker CR
    Plant Cell Rep; 2004 Apr; 22(9):645-52. PubMed ID: 14615907
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Agrobacterium tumefaciens-mediated genetic transformation of Salix matsudana Koidz. using mature seeds.
    Yang J; Yi J; Yang C; Li C
    Tree Physiol; 2013 Jun; 33(6):628-39. PubMed ID: 23771952
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration.
    Bakshi S; Sadhukhan A; Mishra S; Sahoo L
    Plant Cell Rep; 2011 Dec; 30(12):2281-92. PubMed ID: 21853337
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regeneration of herbicide-tolerant black locust transgenic plants by SAAT.
    Zaragozá C; Muñoz-Bertomeu J; Arrillaga I
    Plant Cell Rep; 2004 Jun; 22(11):832-8. PubMed ID: 14767606
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High throughput Agrobacterium tumefaciens-mediated germline transformation of mechanically isolated meristem explants of cotton (Gossypium hirsutum L.).
    Chen Y; Rivlin A; Lange A; Ye X; Vaghchhipawala Z; Eisinger E; Dersch E; Paris M; Martinell B; Wan Y
    Plant Cell Rep; 2014 Jan; 33(1):153-64. PubMed ID: 24129847
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spike-dip transformation of Setaria viridis.
    Saha P; Blumwald E
    Plant J; 2016 Apr; 86(1):89-101. PubMed ID: 26932666
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vitro regeneration and Agrobacterium tumefaciens-mediated genetic transformation in asakura-sanshoo (Zanthoxylum piperitum (L.) DC. F. inerme Makino) an important medicinal plant.
    Zeng X; Zhao D
    Pharmacogn Mag; 2015; 11(42):374-80. PubMed ID: 25829778
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Agrobacterium tumefaciens-mediated transformation of Phellodendron amurense Rupr. using mature-seed explants.
    Yang J; Zhao B; Kim YB; Zhou C; Li C; Chen Y; Zhang H; Li CH
    Mol Biol Rep; 2013 Jan; 40(1):281-8. PubMed ID: 23065217
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genetic transformation of Robinia pseudoacacia by Agrobacterium tumefaciens.
    Kanwar K; Bhardwaj A; Agarwal S; Sharma DR
    Indian J Exp Biol; 2003 Feb; 41(2):149-53. PubMed ID: 15255607
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Agrobacterium tumefaciens-mediated transformation of Rhipsalidopsis gaertneri.
    Al-Ramamneh EA; Sriskandarajah S; Serek M
    Plant Cell Rep; 2006 Nov; 25(11):1219-25. PubMed ID: 16799807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.