These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
327 related articles for article (PubMed ID: 15481029)
1. Synthesis and degradation of nucleobases and nucleic acids by formamide in the presence of montmorillonites. Saladino R; Crestini C; Ciambecchini U; Ciciriello F; Costanzo G; Di Mauro E Chembiochem; 2004 Nov; 5(11):1558-66. PubMed ID: 15481029 [TBL] [Abstract][Full Text] [Related]
2. One-pot TiO2-catalyzed synthesis of nucleic bases and acyclonucleosides from formamide: implications for the origin of life. Saladino R; Ciambecchini U; Crestini C; Costanzo G; Negri R; Di Mauro E Chembiochem; 2003 Jun; 4(6):514-21. PubMed ID: 12794862 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and degradation of nucleic Acid components by formamide and cosmic dust analogues. Saladino R; Crestini C; Neri V; Brucato JR; Colangeli L; Ciciriello F; Di Mauro E; Costanzo G Chembiochem; 2005 Aug; 6(8):1368-74. PubMed ID: 16003804 [TBL] [Abstract][Full Text] [Related]
5. Formamide-based synthesis of nucleobases by metal(II) octacyanomolybdate(IV): implication in prebiotic chemistry. Kumar A; Sharma R; Kamaluddin Astrobiology; 2014 Sep; 14(9):769-79. PubMed ID: 25192494 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and degradation of nucleic acid components by formamide and iron sulfur minerals. Saladino R; Neri V; Crestini C; Costanzo G; Graciotti M; Di Mauro E J Am Chem Soc; 2008 Nov; 130(46):15512-8. PubMed ID: 18939836 [TBL] [Abstract][Full Text] [Related]
7. Formation of nucleobases from formamide in the presence of iron oxides: implication in chemical evolution and origin of life. Shanker U; Bhushan B; Bhattacharjee G; Kamaluddin Astrobiology; 2011 Apr; 11(3):225-33. PubMed ID: 21480791 [TBL] [Abstract][Full Text] [Related]
8. Catalytic Role of Manganese Oxides in Prebiotic Nucleobases Synthesis from Formamide. Bhushan B; Nayak A; Kamaluddin Orig Life Evol Biosph; 2016 Jun; 46(2-3):203-13. PubMed ID: 26758444 [TBL] [Abstract][Full Text] [Related]
9. The role of the formamide/zirconia system in the synthesis of nucleobases and biogenic carboxylic acid derivatives. Saladino R; Neri V; Crestini C; Costanzo G; Graciotti M; Di Mauro E J Mol Evol; 2010 Aug; 71(2):100-10. PubMed ID: 20665014 [TBL] [Abstract][Full Text] [Related]
10. Formamide as the main building block in the origin of nucleic acids. Costanzo G; Saladino R; Crestini C; Ciciriello F; Di Mauro E BMC Evol Biol; 2007 Aug; 7 Suppl 2(Suppl 2):S1. PubMed ID: 17767725 [TBL] [Abstract][Full Text] [Related]
12. Origin of informational polymers: The concurrent roles of formamide and phosphates. Saladino R; Crestini C; Neri V; Ciciriello F; Costanzo G; Di Mauro E Chembiochem; 2006 Nov; 7(11):1707-14. PubMed ID: 17051657 [TBL] [Abstract][Full Text] [Related]
13. Free radical routes for prebiotic formation of DNA nucleobases from formamide. Jeilani YA; Nguyen HT; Newallo D; Dimandja JM; Nguyen MT Phys Chem Chem Phys; 2013 Dec; 15(48):21084-93. PubMed ID: 24219977 [TBL] [Abstract][Full Text] [Related]
14. A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidinone from formamide: implications for the origin of life. Saladino R; Crestini C; Costanzo G; Negri R; Di Mauro E Bioorg Med Chem; 2001 May; 9(5):1249-53. PubMed ID: 11377183 [TBL] [Abstract][Full Text] [Related]
15. Through-bond correlation of sugar and base protons in unlabeled nucleic acids. Phan AT J Magn Reson; 2001 Dec; 153(2):223-6. PubMed ID: 11740898 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of Nucleic Acid Bases by Metal Ferrite Nanoparticles from a Single Carbon Atom Precursor Molecule: Formamide. Iqubal MA; Sharma R; Kamaluddin ; Jheeta S Orig Life Evol Biosph; 2019 Sep; 49(3):147-162. PubMed ID: 31444635 [TBL] [Abstract][Full Text] [Related]
17. Formamide chemistry and the origin of informational polymers. Saladino R; Crestini C; Ciciriello F; Costanzo G; Di Mauro E Chem Biodivers; 2007 Apr; 4(4):694-720. PubMed ID: 17443884 [TBL] [Abstract][Full Text] [Related]
18. Chemical etiology of nucleic acids: aminopropyl nucleic acids (APNAs). Zhou D; Froeyen M; Rozenski J; Van Aerschot A; Herdewijn P Chem Biodivers; 2007 Apr; 4(4):740-61. PubMed ID: 17443886 [TBL] [Abstract][Full Text] [Related]
19. Chemical evolution: from formamide to nucleobases and amino acids without the presence of catalyst. Enchev V; Angelov I; Dincheva I; Stoyanova N; Slavova S; Rangelov M; Markova N J Biomol Struct Dyn; 2021 Sep; 39(15):5563-5578. PubMed ID: 32677584 [TBL] [Abstract][Full Text] [Related]
20. Reactivity of substituted charged phenyl radicals toward components of nucleic acids. Ramírez-Arizmendi LE; Heidbrink JL; Guler LP; Kenttämaa HI J Am Chem Soc; 2003 Feb; 125(8):2272-81. PubMed ID: 12590557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]