BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

619 related articles for article (PubMed ID: 15481050)

  • 1. Histochemical evidence of the initial chondrogenesis and osteogenesis in the periosteum of a rib fractured model: implications of osteocyte involvement in periosteal chondrogenesis.
    Li M; Amizuka N; Oda K; Tokunaga K; Ito T; Takeuchi K; Takagi R; Maeda T
    Microsc Res Tech; 2004 Jul; 64(4):330-42. PubMed ID: 15481050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The repair of fractured membrane bones in the newly hatched chick.
    Hall BK; Jacobson HN
    Anat Rec; 1975 Jan; 181(1):55-69. PubMed ID: 1109563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro differentiation potential of the periosteal cells from a membrane bone, the quadratojugal of the embryonic chick.
    Fang J; Hall BK
    Dev Biol; 1996 Dec; 180(2):701-12. PubMed ID: 8954738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periosteum responds to dynamic fluid pressure by proliferating in vitro.
    Saris DB; Sanyal A; An KN; Fitzsimmons JS; O'Driscoll SW
    J Orthop Res; 1999 Sep; 17(5):668-77. PubMed ID: 10569475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-CAM is not required for initiation of secondary chondrogenesis: the role of N-CAM in skeletal condensation and differentiation.
    Fang J; Hall BK
    Int J Dev Biol; 1999 Jul; 43(4):335-42. PubMed ID: 10470650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunolocalization of osteocyte-derived molecules during bone fracture healing of mouse ribs.
    Liu Z; Yamamoto T; Hasegawa T; Hongo H; Tsuboi K; Tsuchiya E; Haraguchi M; Abe M; Freitas PH; Kudo A; Oda K; Li M; Amizuka N
    Biomed Res; 2016; 37(2):141-51. PubMed ID: 27108883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The healing potential of the periosteum molecular aspects.
    Malizos KN; Papatheodorou LK
    Injury; 2005 Nov; 36 Suppl 3():S13-9. PubMed ID: 16188544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial evidence for the involvement of bone morphogenetic protein-2 early during periosteal chondrogenesis.
    Sanyal A; Sarkar G; Saris DB; Fitzsimmons JS; Bolander ME; O'Driscoll SW
    J Orthop Res; 1999 Nov; 17(6):926-34. PubMed ID: 10632460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of cyclic bending loading on in vivo skeletal tissue regeneration from periosteal origin.
    Moukoko D; Pourquier D; Pithioux M; Chabrand P
    Orthop Traumatol Surg Res; 2010 Dec; 96(8):833-9. PubMed ID: 21036687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chondrogenic potential of periosteum decreases with age.
    O'Driscoll SW; Saris DB; Ito Y; Fitzimmons JS
    J Orthop Res; 2001 Jan; 19(1):95-103. PubMed ID: 11332626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of CD-RAP mRNA during periosteal chondrogenesis.
    Sanyal A; Clemens V; Fitzsimmons JS; Reinholz GG; Sarkar G; Mukherjee N; O'Driscoll SW
    J Orthop Res; 2003 Mar; 21(2):296-304. PubMed ID: 12568962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The enhancement of periosteal chondrogenesis in organ culture by dynamic fluid pressure.
    Mukherjee N; Saris DB; Schultz FM; Berglund LJ; An KN; O' Driscoll SW
    J Orthop Res; 2001 Jul; 19(4):524-30. PubMed ID: 11518256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship of donor site to chondrogenic potential of periosteum in vitro.
    Gallay SH; Miura Y; Commisso CN; Fitzsimmons JS; O'Driscoll SW
    J Orthop Res; 1994 Jul; 12(4):515-25. PubMed ID: 8064482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit.
    Koga H; Muneta T; Nagase T; Nimura A; Ju YJ; Mochizuki T; Sekiya I
    Cell Tissue Res; 2008 Aug; 333(2):207-15. PubMed ID: 18560897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomy and histophysiology of the periosteum: quantification of the periosteal blood supply to the adjacent bone with 85Sr and gamma spectrometry.
    Chanavaz M
    J Oral Implantol; 1995; 21(3):214-9. PubMed ID: 8699515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel in vivo model to study endochondral bone formation; HIF-1alpha activation and BMP expression.
    Emans PJ; Spaapen F; Surtel DA; Reilly KM; Cremers A; van Rhijn LW; Bulstra SK; Voncken JW; Kuijer R
    Bone; 2007 Feb; 40(2):409-18. PubMed ID: 16979964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histological studies of bone formation during pedicle restoration and early antler regeneration in roe deer and fallow deer.
    Kierdorf U; Stoffels E; Stoffels D; Kierdorf H; Szuwart T; Clemen G
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Aug; 273(2):741-51. PubMed ID: 12845710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative regional associations between remodeling, modeling, and osteocyte apoptosis and density in rabbit tibial midshafts.
    Hedgecock NL; Hadi T; Chen AA; Curtiss SB; Martin RB; Hazelwood SJ
    Bone; 2007 Mar; 40(3):627-37. PubMed ID: 17157571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo generation of cartilage from periosteum.
    Emans PJ; Surtel DA; Frings EJ; Bulstra SK; Kuijer R
    Tissue Eng; 2005; 11(3-4):369-77. PubMed ID: 15869417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential expression of neural cell adhesion molecule (NCAM) during osteogenesis and secondary chondrogenesis in the embryonic chick.
    Fang J; Hall BK
    Int J Dev Biol; 1995 Jun; 39(3):519-28. PubMed ID: 7577443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.