BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 15481438)

  • 1. Epigenetic inactivation of tumor suppressor genes in hematologic malignancies.
    Kinoshita T
    Int J Hematol; 2004 Aug; 80(2):108-19. PubMed ID: 15481438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of epigenetic changes in hematological malignancies.
    Lehmann U; Brakensiek K; Kreipe H
    Ann Hematol; 2004 Mar; 83(3):137-52. PubMed ID: 15064862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond genetics--the emerging role of epigenetic changes in hematopoietic malignancies.
    Galm O; Esteller M
    Int J Hematol; 2004 Aug; 80(2):120-7. PubMed ID: 15481439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations of DNA methylation in hematologic malignancies.
    Rush LJ; Plass C
    Cancer Lett; 2002 Nov; 185(1):1-12. PubMed ID: 12142073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg.
    Esteller M
    Clin Immunol; 2003 Oct; 109(1):80-8. PubMed ID: 14585279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic inactivation of the Groucho homologue gene TLE1 in hematologic malignancies.
    Fraga MF; Berdasco M; Ballestar E; Ropero S; Lopez-Nieva P; Lopez-Serra L; Martín-Subero JI; Calasanz MJ; Lopez de Silanes I; Setien F; Casado S; Fernandez AF; Siebert R; Stifani S; Esteller M
    Cancer Res; 2008 Jun; 68(11):4116-22. PubMed ID: 18519670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypermethylation of gene promoters in hematological neoplasia.
    Chim CS; Liang R; Kwong YL
    Hematol Oncol; 2002 Dec; 20(4):167-76. PubMed ID: 12469326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CEBP Epigenetic Dysregulation as a Drug Target for the Treatment of Hematologic and Gynecologic Malignancies.
    Sun C; Duan P; Luan C
    Curr Drug Targets; 2017; 18(10):1142-1151. PubMed ID: 28031014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoter methylation and loss of coding exons of the fragile histidine triad (FHIT) gene in intrahepatic cholangiocarcinomas.
    Foja S; Goldberg M; Schagdarsurengin U; Dammann R; Tannapfel A; Ballhausen WG
    Liver Int; 2005 Dec; 25(6):1202-8. PubMed ID: 16343073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: evidence for a VHL-independent pathway in clear cell renal tumourigenesis.
    Clifford SC; Prowse AH; Affara NA; Buys CH; Maher ER
    Genes Chromosomes Cancer; 1998 Jul; 22(3):200-9. PubMed ID: 9624531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene silencing by DNA methylation in haematological malignancies.
    Boultwood J; Wainscoat JS
    Br J Haematol; 2007 Jul; 138(1):3-11. PubMed ID: 17489980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fundamental role of epigenetics in hematopoietic malignancies.
    Galm O; Herman JG; Baylin SB
    Blood Rev; 2006 Jan; 20(1):1-13. PubMed ID: 16426940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes p15, p16, p18 and p19 in human leukemia-lymphoma cells.
    Drexler HG
    Leukemia; 1998 Jun; 12(6):845-59. PubMed ID: 9639410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of the INK4a/ARF locus and p53 in sporadic extrahepatic bile duct cancers and bile tract cancer cell lines.
    Caca K; Feisthammel J; Klee K; Tannapfel A; Witzigmann H; Wittekind C; Mössner J; Berr F
    Int J Cancer; 2002 Feb; 97(4):481-8. PubMed ID: 11802210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic modulation in hematologic malignancies: challenges and progress.
    Mitsiades CS; Anderson KC
    J Natl Compr Canc Netw; 2009 Nov; 7 Suppl 8():S1-12; quiz S14-6. PubMed ID: 19930971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CDKN2 (MTS1/p16INK4A) gene alterations in hematological malignancies.
    Uchida T; Kinoshita T; Saito H; Hotta T
    Leuk Lymphoma; 1997 Feb; 24(5-6):449-61. PubMed ID: 9086436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The candidate tumor suppressor gene BLU, located at the commonly deleted region 3p21.3, is an E2F-regulated, stress-responsive gene and inactivated by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma.
    Qiu GH; Tan LK; Loh KS; Lim CY; Srivastava G; Tsai ST; Tsao SW; Tao Q
    Oncogene; 2004 Jun; 23(27):4793-806. PubMed ID: 15122337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remodeling epigenetic modifications at tumor suppressor gene promoters with bovine oocyte extract.
    Wang Z; Yue Y; Han P; Sa R; Ren X; Wang J; Bai H; Yu H
    Cytotherapy; 2013 Sep; 15(9):1164-73. PubMed ID: 23800731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SRARP and HSPB7 are epigenetically regulated gene pairs that function as tumor suppressors and predict clinical outcome in malignancies.
    Naderi A
    Mol Oncol; 2018 May; 12(5):724-755. PubMed ID: 29577611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic and genetic loss of Hic1 function accentuates the role of p53 in tumorigenesis.
    Chen W; Cooper TK; Zahnow CA; Overholtzer M; Zhao Z; Ladanyi M; Karp JE; Gokgoz N; Wunder JS; Andrulis IL; Levine AJ; Mankowski JL; Baylin SB
    Cancer Cell; 2004 Oct; 6(4):387-98. PubMed ID: 15488761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.