These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 15481584)

  • 21. The effect of enamel matrix proteins on the spreading, proliferation and differentiation of osteoblasts cultured on titanium surfaces.
    Miron RJ; Oates CJ; Molenberg A; Dard M; Hamilton DW
    Biomaterials; 2010 Jan; 31(3):449-60. PubMed ID: 19819013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of novel chemical strategies for covalent attachment of adhesive peptides to rough titanium surfaces: XPS analysis and biological evaluation.
    Dettin M; Herath T; Gambaretto R; Iucci G; Battocchio C; Bagno A; Ghezzo F; Di Bello C; Polzonetti G; Di Silvio L
    J Biomed Mater Res A; 2009 Nov; 91(2):463-79. PubMed ID: 18985764
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bone cell attachment to dental implants of different surface characteristics.
    Lumbikanonda N; Sammons R
    Int J Oral Maxillofac Implants; 2001; 16(5):627-36. PubMed ID: 11669244
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Titanium nitride oxide coating on rough titanium stimulates the proliferation of human primary osteoblasts.
    Durual S; Pernet F; Rieder P; Mekki M; Cattani-Lorente M; Wiskott HW
    Clin Oral Implants Res; 2011 May; 22(5):552-9. PubMed ID: 21087318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Translucent titanium coating facilitates observation of osteoblast migration behavior on a titanium surface.
    Ho Y; Kok SH; Wang JS; Lin LD
    Int J Oral Maxillofac Implants; 2012; 27(2):278-87. PubMed ID: 22442765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces.
    Finke B; Luethen F; Schroeder K; Mueller PD; Bergemann C; Frant M; Ohl A; Nebe BJ
    Biomaterials; 2007 Oct; 28(30):4521-34. PubMed ID: 17628662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo effects of RGD-coated titanium implants inserted in two bone-gap models.
    Elmengaard B; Bechtold JE; Søballe K
    J Biomed Mater Res A; 2005 Nov; 75(2):249-55. PubMed ID: 16106438
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bone formation on apatite-coated titanium incorporated with bone morphogenetic protein and heparin.
    Kodama T; Goto T; Miyazaki T; Takahashi T
    Int J Oral Maxillofac Implants; 2008; 23(6):1013-9. PubMed ID: 19216269
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microtopography of titanium suppresses osteoblastic differentiation but enhances chondroblastic differentiation of rat femoral periosteum-derived cells.
    Kubo K; Att W; Yamada M; Ohmi K; Tsukimura N; Suzuki T; Maeda H; Ogawa T
    J Biomed Mater Res A; 2008 Nov; 87(2):380-91. PubMed ID: 18181115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro evaluation of cell proliferation and collagen synthesis on titanium following plasma electrolytic oxidation.
    Whiteside P; Matykina E; Gough JE; Skeldon P; Thompson GE
    J Biomed Mater Res A; 2010 Jul; 94(1):38-46. PubMed ID: 20091708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RGD-Modified Titanium as an Improved Osteoinductive Biomaterial for Use in Dental and Orthopedic Implants.
    Seemann A; Akbaba S; Buchholz J; Türkkan S; Tezcaner A; Woche SK; Guggenberger G; Kirschning A; Dräger G
    Bioconjug Chem; 2022 Feb; 33(2):294-300. PubMed ID: 35073056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of irradiation modification and RGD sequence adsorption on the response of human osteoblasts to polycaprolactone.
    Marletta G; Ciapetti G; Satriano C; Pagani S; Baldini N
    Biomaterials; 2005 Aug; 26(23):4793-804. PubMed ID: 15763259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation on the biocompatibility of bioactive titanium metals by type I collagen.
    Wang QQ; Li W; Yang BC
    J Biomed Mater Res A; 2011 Oct; 99(1):125-34. PubMed ID: 21812093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osteoblast responses to different oxide coatings produced by the sol-gel process on titanium substrates.
    Ochsenbein A; Chai F; Winter S; Traisnel M; Breme J; Hildebrand HF
    Acta Biomater; 2008 Sep; 4(5):1506-17. PubMed ID: 18440883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of human mandibular osteoblasts grown on two commercially available titanium implant surfaces.
    Galli C; Guizzardi S; Passeri G; Martini D; Tinti A; Mauro G; Macaluso GM
    J Periodontol; 2005 Mar; 76(3):364-72. PubMed ID: 15857069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The biocompatibility of SLA-treated titanium implants.
    Kim H; Choi SH; Ryu JJ; Koh SY; Park JH; Lee IS
    Biomed Mater; 2008 Jun; 3(2):025011. PubMed ID: 18458368
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The response of osteoblast-like cells towards collagen type I coating immobilized by p-nitrophenylchloroformate to titanium.
    van den Dolder J; Jansen JA
    J Biomed Mater Res A; 2007 Dec; 83(3):712-9. PubMed ID: 17559125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon plasma immersion ion implantation of nickel-titanium shape memory alloys.
    Poon RW; Yeung KW; Liu XY; Chu PK; Chung CY; Lu WW; Cheung KM; Chan D
    Biomaterials; 2005 May; 26(15):2265-72. PubMed ID: 15585228
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Corrosion resistance and biocompatibility of a new porous surface for titanium implants.
    Simon M; Lagneau C; Moreno J; Lissac M; Dalard F; Grosgogeat B
    Eur J Oral Sci; 2005 Dec; 113(6):537-45. PubMed ID: 16324146
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomimetic implant coatings.
    Eisenbarth E; Velten D; Breme J
    Biomol Eng; 2007 Feb; 24(1):27-32. PubMed ID: 16828342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.