These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 15481823)

  • 1. Influence of dispersion length on leaching calculated with PEARL, PELMO and PRZM for FOCUS groundwater scenarios.
    Boesten JJ
    Pest Manag Sci; 2004 Oct; 60(10):971-80. PubMed ID: 15481823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameterisation, evaluation and comparison of pesticide leaching models to data from a Bologna field site, Italy.
    Garratt JA; Capri E; Trevisan M; Errera G; Wilkins RM
    Pest Manag Sci; 2003 Jan; 59(1):3-20. PubMed ID: 12558095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of pesticide leaching in a cracking clay soil with the PEARL model.
    Scorza Júnior RP; Boesten JJ
    Pest Manag Sci; 2005 May; 61(5):432-48. PubMed ID: 15643643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of groundwater pesticide exposure modeling scenarios for vulnerable spring and winter wheat-growing areas.
    Padilla L; Winchell M; Peranginangin N; Grant S
    Integr Environ Assess Manag; 2017 Nov; 13(6):992-1006. PubMed ID: 28266137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of acetochlor degradation in the unsaturated zone using two novel in situ field techniques: comparisons with laboratory-generated data and implications for groundwater risk assessments.
    Mills MS; Hill IR; Newcombe AC; Simmons ND; Vaughan PC; Verity AA
    Pest Manag Sci; 2001 Apr; 57(4):351-9. PubMed ID: 11455814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A globally applicable location-specific screening model for assessing the relative risk of pesticide leaching.
    Whelan MJ; Davenport EJ; Smith BG
    Sci Total Environ; 2007 May; 377(2-3):192-206. PubMed ID: 17391735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pesticides groundwater modelling relies on input data characterised by a high intrinsic variability: Is the resulting risk for groundwater credible?
    Ullucci S; Menaballi L; Di Giorgi S; Luini M; Riva C; Schlitt C; Clementi E; Azimonti G
    Sci Total Environ; 2022 Sep; 839():156314. PubMed ID: 35640749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity analyses for four pesticide leaching models.
    Dubus IG; Brown CD; Beulke S
    Pest Manag Sci; 2003 Sep; 59(9):962-82. PubMed ID: 12974348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of three pesticide fate models with respect to the leaching of two herbicides under field conditions in an irrigated maize cropping system.
    Marín-Benito JM; Pot V; Alletto L; Mamy L; Bedos C; Barriuso E; Benoit P
    Sci Total Environ; 2014 Nov; 499():533-45. PubMed ID: 25130625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncalibrated modelling of conservative tracer and pesticide leaching to groundwater: comparison of potential Tier II exposure assessment models.
    Fox GA; Sabbagh GJ; Chen W; Russell MH
    Pest Manag Sci; 2006 Jun; 62(6):537-50. PubMed ID: 16625679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of pesticide leaching potential to groundwater under EU FOCUS and site specific conditions.
    Labite H; Holden NM; Richards KG; Kramers G; Premrov A; Coxon CE; Cummins E
    Sci Total Environ; 2013 Oct; 463-464():432-41. PubMed ID: 23831789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pesticide fate parameters and their uncertainty on the selection of 'worst-case' scenarios of pesticide leaching to groundwater.
    Vanderborght J; Tiktak A; Boesten JJ; Vereecken H
    Pest Manag Sci; 2011 Mar; 67(3):294-306. PubMed ID: 21308955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An appraisal of methods for measurement of pesticide transformation in the groundwater zone.
    Leistra M; Smelt JH
    Pest Manag Sci; 2001 Apr; 57(4):333-40. PubMed ID: 11455812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GIS based ArcPRZM-3 model for bentazon leaching towards groundwater.
    Akbar TA; Lin H
    J Environ Sci (China); 2010; 22(12):1854-9. PubMed ID: 21462701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of pesticide volatilization with PELMO 3.31.
    Ferrari F; Klein M; Capri E; Trevisan M
    Chemosphere; 2005 Jul; 60(5):705-13. PubMed ID: 15963809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of pesticide root zone model 3.12: leaching predictions with field data.
    Russell MH; Jones RL
    Environ Toxicol Chem; 2002 Aug; 21(8):1552-7. PubMed ID: 12152753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pesticide distribution in an agricultural environment in Argentina.
    Loewy RM; Monza LB; Kirs VE; Savini MC
    J Environ Sci Health B; 2011; 46(8):662-70. PubMed ID: 21806463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pesticide volatilization from soil: lysimeter measurements versus predictions of European registration models.
    Wolters A; Linnemann V; Herbst M; Klein M; Schäffer A; Vereecken H
    J Environ Qual; 2003; 32(4):1183-93. PubMed ID: 12931871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of key climatic factors regulating the transport of pesticides in leaching and to tile drains.
    Nolan BT; Dubus IG; Surdyk N; Fowler HJ; Burton A; Hollis JM; Reichenberger S; Jarvis NJ
    Pest Manag Sci; 2008 Sep; 64(9):933-44. PubMed ID: 18416432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A moni-modelling approach to manage groundwater risk to pesticide leaching at regional scale.
    Di Guardo A; Finizio A
    Sci Total Environ; 2016 Mar; 545-546():200-9. PubMed ID: 26747983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.