These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 15482061)

  • 1. The relationship between dominance rank and spatial ability among male meadow voles (Microtus pennsylvanicus).
    Spritzer MD; Meikle DB; Solomon NG
    J Comp Psychol; 2004 Sep; 118(3):332-9. PubMed ID: 15482061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gonadal hormone levels and spatial learning performance in the Morris water maze in male and female meadow voles, Microtus pennsylvanicus.
    Galea LA; Kavaliers M; Ossenkopp KP; Hampson E
    Horm Behav; 1995 Mar; 29(1):106-25. PubMed ID: 7782059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sexually dimorphic spatial learning in meadow voles Microtus pennsylvanicus and deer mice Peromyscus maniculatus.
    Galea LA; Kavaliers M; Ossenkopp KP
    J Exp Biol; 1996 Jan; 199(Pt 1):195-200. PubMed ID: 8576690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central vasopressin administration regulates the onset of facultative paternal behavior in microtus pennsylvanicus (meadow voles).
    Parker KJ; Lee TM
    Horm Behav; 2001 Jun; 39(4):285-94. PubMed ID: 11374914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divergent effects of early hydrocortisone treatment on behavioral and brain development in meadow and pine voles.
    Prohazka D; Novak MA; Meyer JS
    Dev Psychobiol; 1986 Nov; 19(6):521-35. PubMed ID: 3542640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental changes in spatial learning in the Morris water-maze in young meadow voles, Microtus pennsylvanicus.
    Galea LA; Ossenkopp KP; Kavaliers M
    Behav Brain Res; 1994 Jan; 60(1):43-50. PubMed ID: 8185851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of overtraining in the Morris water maze on allocentric and egocentric learning strategies in rats.
    Kealy J; Diviney M; Kehoe E; McGonagle V; O'Shea A; Harvey D; Commins S
    Behav Brain Res; 2008 Oct; 192(2):259-63. PubMed ID: 18514924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial water maze learning using celestial cues by the meadow vole, Microtus pennsylvanicus.
    Kavaliers M; Galea LA
    Behav Brain Res; 1994 Mar; 61(1):97-100. PubMed ID: 8031502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Species differences in anxiety-related responses in male prairie and meadow voles: the effects of social isolation.
    Stowe JR; Liu Y; Curtis JT; Freeman ME; Wang Z
    Physiol Behav; 2005 Oct; 86(3):369-78. PubMed ID: 16115657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competition between landmarks in spatial learning: the role of proximity to the goal.
    Chamizo VD; Manteiga RD; Rodrigo T; Mackintosh NJ
    Behav Processes; 2006 Jan; 71(1):59-65. PubMed ID: 16338101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Social and environmental factors influence the suppression of pup-directed aggression and development of paternal behavior in captive meadow voles (Microtus pennsylvanicus).
    Parker KJ; Lee TM
    J Comp Psychol; 2001 Dec; 115(4):331-6. PubMed ID: 11824895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of photoperiod and sex on locomotor behavior of meadow voles (Microtus pennsylvanicus) in an automated light-dark 'anxiety' test.
    Ossenkopp KP; van Anders SM; Engeland CG; Kavaliers M
    Psychoneuroendocrinology; 2005 Oct; 30(9):869-79. PubMed ID: 15979243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enriched rearing facilitates spatial exploration in northern bobwhite (Colinus virginianus) neonates.
    Lazic M; Schneider SM; Lickliter R
    Dev Psychobiol; 2007 Jul; 49(5):548-51. PubMed ID: 17577241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prodynorphin knockout mice demonstrate diminished age-associated impairment in spatial water maze performance.
    Nguyen XV; Masse J; Kumar A; Vijitruth R; Kulik C; Liu M; Choi DY; Foster TC; Usynin I; Bakalkin G; Bing G
    Behav Brain Res; 2005 Jun; 161(2):254-62. PubMed ID: 15922052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sex differences in spatial learning and prefrontal and parietal cortical dendritic morphology in the meadow vole, Microtus pennsylvanicus.
    Kavaliers M; Ossenkopp KP; Galea LA; Kolb B
    Brain Res; 1998 Nov; 810(1-2):41-7. PubMed ID: 9813234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Female meadow voles (Microtus pennsylvanicus) demonstrate same-sex partner preferences.
    Parker KJ; Lee TM
    J Comp Psychol; 2003 Sep; 117(3):283-9. PubMed ID: 14498804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of reversible inactivation of the supramammillary nucleus on spatial learning and memory in rats.
    Shahidi S; Motamedi F; Naghdi N
    Brain Res; 2004 Nov; 1026(2):267-74. PubMed ID: 15488489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age- and sex-related disturbance in a battery of sensorimotor and cognitive tasks in Kunming mice.
    Chen GH; Wang YJ; Zhang LQ; Zhou JN
    Physiol Behav; 2004 Dec; 83(3):531-41. PubMed ID: 15581676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual differences in anxiety trait are related to spatial learning abilities and hippocampal expression of mineralocorticoid receptors.
    Herrero AI; Sandi C; Venero C
    Neurobiol Learn Mem; 2006 Sep; 86(2):150-9. PubMed ID: 16580234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial memory deficits in middle-aged mice correlate with lower exploratory activity and a subordinate status: role of hippocampal neurotrophins.
    Francia N; Cirulli F; Chiarotti F; Antonelli A; Aloe L; Alleva E
    Eur J Neurosci; 2006 Feb; 23(3):711-28. PubMed ID: 16487153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.