BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 15482256)

  • 1. Examination of mitochondrial protein targeting of haem synthetic enzymes: in vivo identification of three functional haem-responsive motifs in 5-aminolaevulinate synthase.
    Dailey TA; Woodruff JH; Dailey HA
    Biochem J; 2005 Mar; 386(Pt 2):381-6. PubMed ID: 15482256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of terminal enzymes for heme biosynthesis during differentiation of mouse erythroleukemia cells.
    Taketani S; Yoshinaga T; Furukawa T; Kohno H; Tokunaga R; Nishimura K; Inokuchi H
    Eur J Biochem; 1995 Jun; 230(2):760-5. PubMed ID: 7607249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple mechanisms for the regulation of haem synthesis during erythroid cell differentiation. Possible role for coproporphyrinogen oxidase.
    Conder LH; Woodard SI; Dailey HA
    Biochem J; 1991 Apr; 275 ( Pt 2)(Pt 2):321-6. PubMed ID: 2025219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haem regulation of the mitochondrial import of the Kluyveromyces lactis 5-aminolaevulinate synthase: an organelle approach.
    González-Domínguez M; Freire-Picos MA; Cerdán ME
    Yeast; 2001 Jan; 18(1):41-8. PubMed ID: 11124700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ conversion of coproporphyrinogen to heme by murine mitochondria: terminal steps of the heme biosynthetic pathway.
    Proulx KL; Woodard SI; Dailey HA
    Protein Sci; 1993 Jul; 2(7):1092-8. PubMed ID: 8358292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biphasic ordered induction of heme synthesis in differentiating murine erythroleukemia cells: role of erythroid 5-aminolevulinate synthase.
    Lake-Bullock H; Dailey HA
    Mol Cell Biol; 1993 Nov; 13(11):7122-32. PubMed ID: 8413301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Diversity of the terminal enzymes for heme biosynthesis].
    Taketani S
    Seikagaku; 1995 Mar; 67(3):233-7. PubMed ID: 7602200
    [No Abstract]   [Full Text] [Related]  

  • 8. Crystal structure of protoporphyrinogen IX oxidase: a key enzyme in haem and chlorophyll biosynthesis.
    Koch M; Breithaupt C; Kiefersauer R; Freigang J; Huber R; Messerschmidt A
    EMBO J; 2004 Apr; 23(8):1720-8. PubMed ID: 15057273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of sequences required for the import of human protoporphyrinogen oxidase to mitochondria.
    Morgan RR; Errington R; Elder GH
    Biochem J; 2004 Jan; 377(Pt 2):281-7. PubMed ID: 14535846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of delta-aminolaevulinate synthase encoded by the parasite gene in de novo haem synthesis by Plasmodium falciparum.
    Varadharajan S; Dhanasekaran S; Bonday ZQ; Rangarajan PN; Padmanaban G
    Biochem J; 2002 Oct; 367(Pt 2):321-7. PubMed ID: 12119044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heme metabolism in erythroid and hepatic cells.
    Ibraham NG; Friedland ML; Levere RD
    Prog Hematol; 1983; 13():75-130. PubMed ID: 6366915
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of iron deficiency and chronic iron overloading on mitochondrial heme biosynthetic enzymes in rat liver.
    Abraham NG; Camadro JM; Hoffstein ST; Levere RD
    Biochim Biophys Acta; 1986 Mar; 870(2):339-49. PubMed ID: 3955059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terminal steps of haem biosynthesis.
    Dailey HA
    Biochem Soc Trans; 2002 Aug; 30(4):590-5. PubMed ID: 12196143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythroid 5-aminolevulinate synthase, ferrochelatase and DMT1 expression in erythroid progenitors: differential pathways for erythropoietin and iron-dependent regulation.
    Zoller H; Decristoforo C; Weiss G
    Br J Haematol; 2002 Aug; 118(2):619-26. PubMed ID: 12139757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of human protoporphyrinogen oxidase in controls and variegate porphyrias.
    Dailey HA; Dailey TA
    Cell Mol Biol (Noisy-le-grand); 1997 Feb; 43(1):67-73. PubMed ID: 9074790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning of a human cDNA for protoporphyrinogen oxidase by complementation in vivo of a hemG mutant of Escherichia coli.
    Nishimura K; Taketani S; Inokuchi H
    J Biol Chem; 1995 Apr; 270(14):8076-80. PubMed ID: 7713909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protoporphyrin accumulation by mitogen stimulated lymphocytes and protoporphyrinogen oxidase activity in patients with porphyria variegata and erythropoietic protoporphyria: evidence for deficiency of protoporphyrinogen oxidase and ferrochelatase in both diseases.
    Siepker LJ; Kramer S
    Br J Haematol; 1985 May; 60(1):65-74. PubMed ID: 3924091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and characterization of a plastidal and a mitochondrial isoform of tobacco protoporphyrinogen IX oxidase.
    Lermontova I; Kruse E; Mock HP; Grimm B
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8895-900. PubMed ID: 9238074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mouse protoporphyrinogen oxidase. Kinetic parameters and demonstration of inhibition by bilirubin.
    Ferreira GC; Dailey HA
    Biochem J; 1988 Mar; 250(2):597-603. PubMed ID: 2451512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A R59W mutation in human protoporphyrinogen oxidase results in decreased enzyme activity and is prevalent in South Africans with variegate porphyria.
    Meissner PN; Dailey TA; Hift RJ; Ziman M; Corrigall AV; Roberts AG; Meissner DM; Kirsch RE; Dailey HA
    Nat Genet; 1996 May; 13(1):95-7. PubMed ID: 8673113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.