BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15482824)

  • 1. Mechanical properties, proteolytic degradability and biological modifications affect angiogenic process extension into native and modified fibrin matrices in vitro.
    Urech L; Bittermann AG; Hubbell JA; Hall H
    Biomaterials; 2005 Apr; 26(12):1369-79. PubMed ID: 15482824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurite extension and in vitro myelination within three-dimensional modified fibrin matrices.
    Pittier R; Sauthier F; Hubbell JA; Hall H
    J Neurobiol; 2005 Apr; 63(1):1-14. PubMed ID: 15616962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix-bound sixth Ig-like domain of cell adhesion molecule L1 acts as an angiogenic factor by ligating alphavbeta3-integrin and activating VEGF-R2.
    Hall H; Hubbell JA
    Microvasc Res; 2004 Nov; 68(3):169-78. PubMed ID: 15501236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterophilic interactions between cell adhesion molecule L1 and alphavbeta3-integrin induce HUVEC process extension in vitro and angiogenesis in vivo.
    Hall H; Djonov V; Ehrbar M; Hoechli M; Hubbell JA
    Angiogenesis; 2004; 7(3):213-23. PubMed ID: 15609076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular properties of fibrin-based matrices for promotion of angiogenesis in vitro.
    Hall H; Baechi T; Hubbell JA
    Microvasc Res; 2001 Nov; 62(3):315-26. PubMed ID: 11678634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The induction of cell alignment by covalently immobilized gradients of the 6th Ig-like domain of cell adhesion molecule L1 in 3D-fibrin matrices.
    Lühmann T; Hänseler P; Grant B; Hall H
    Biomaterials; 2009 Sep; 30(27):4503-12. PubMed ID: 19523683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered fibrin matrices for functional display of cell membrane-bound growth factor-like activities: study of angiogenic signaling by ephrin-B2.
    Zisch AH; Zeisberger SM; Ehrbar M; Djonov V; Weber CC; Ziemiecki A; Pasquale EB; Hubbell JA
    Biomaterials; 2004 Jul; 25(16):3245-57. PubMed ID: 14980419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembling short oligopeptides and the promotion of angiogenesis.
    Narmoneva DA; Oni O; Sieminski AL; Zhang S; Gertler JP; Kamm RD; Lee RT
    Biomaterials; 2005 Aug; 26(23):4837-46. PubMed ID: 15763263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered blood and lymphatic capillaries in 3-D VEGF-fibrin-collagen matrices with interstitial flow.
    Helm CL; Zisch A; Swartz MA
    Biotechnol Bioeng; 2007 Jan; 96(1):167-76. PubMed ID: 17133613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autologous fibrin matrices: a potential source of biological mediators that modulate tendon cell activities.
    Anitua E; Sanchez M; Nurden AT; Zalduendo M; de la Fuente M; Orive G; Azofra J; Andia I
    J Biomed Mater Res A; 2006 May; 77(2):285-93. PubMed ID: 16400654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro analysis of the interactions between preadipocytes and endothelial cells in a 3D fibrin matrix.
    Borges J; Müller MC; Momeni A; Stark GB; Torio-Padron N
    Minim Invasive Ther Allied Technol; 2007; 16(3):141-8. PubMed ID: 17573618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of passage number and matrix characteristics on differentiation of endothelial cells cultured for tissue engineering.
    Prasad Chennazhy K; Krishnan LK
    Biomaterials; 2005 Oct; 26(28):5658-67. PubMed ID: 15878371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue substitutes with improved angiogenic capabilities: an in vitro investigation with endothelial cells and endothelial progenitor cells.
    Grieb G; Groger A; Piatkowski A; Markowicz M; Steffens GC; Pallua N
    Cells Tissues Organs; 2010; 191(2):96-104. PubMed ID: 19641290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures.
    Cummings CL; Gawlitta D; Nerem RM; Stegemann JP
    Biomaterials; 2004 Aug; 25(17):3699-706. PubMed ID: 15020145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VEGF increases the fibrinolytic activity of endothelial cells within fibrin matrices: involvement of VEGFR-2, tissue type plasminogen activator and matrix metalloproteinases.
    Ratel D; Mihoubi S; Beaulieu E; Durocher Y; Rivard GE; Gingras D; Béliveau R
    Thromb Res; 2007; 121(2):203-12. PubMed ID: 17512973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modifications of photocrosslinked biodegradable elastomers and their influence on smooth muscle cell adhesion and proliferation.
    Ilagan BG; Amsden BG
    Acta Biomater; 2009 Sep; 5(7):2429-40. PubMed ID: 19375999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity.
    Ehrbar M; Metters A; Zammaretti P; Hubbell JA; Zisch AH
    J Control Release; 2005 Jan; 101(1-3):93-109. PubMed ID: 15588897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of fibrin matrix composition to enhance endothelial cell growth and extracellular matrix deposition for in vitro tissue engineering.
    Pankajakshan D; Krishnan LK
    Artif Organs; 2009 Jan; 33(1):16-25. PubMed ID: 19178437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrete crosslinked fibrin microthread scaffolds for tissue regeneration.
    Cornwell KG; Pins GD
    J Biomed Mater Res A; 2007 Jul; 82(1):104-12. PubMed ID: 17269139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascular tissue generation in response to signaling molecules integrated with a novel poly(epsilon-caprolactone)-fibrin hybrid scaffold.
    Pankajakshan D; Krishnan V K; Krishnan LK
    J Tissue Eng Regen Med; 2007; 1(5):389-97. PubMed ID: 18038433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.