BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 15482827)

  • 1. Material-specific thrombin generation following contact between metal surfaces and whole blood.
    Hong J; Azens A; Ekdahl KN; Granqvist CG; Nilsson B
    Biomaterials; 2005 Apr; 26(12):1397-403. PubMed ID: 15482827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of whole blood in thrombin generation in contact with various titanium surfaces.
    Thor A; Rasmusson L; Wennerberg A; Thomsen P; Hirsch JM; Nilsson B; Hong J
    Biomaterials; 2007 Feb; 28(6):966-74. PubMed ID: 17095084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood interactions with noble metals: coagulation and immune complement activation.
    Hulander M; Hong J; Andersson M; Gervén F; Ohrlander M; Tengvall P; Elwing H
    ACS Appl Mater Interfaces; 2009 May; 1(5):1053-62. PubMed ID: 20355891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Titanium is a highly thrombogenic biomaterial: possible implications for osteogenesis.
    Hong J; Andersson J; Ekdahl KN; Elgue G; Axén N; Larsson R; Nilsson B
    Thromb Haemost; 1999 Jul; 82(1):58-64. PubMed ID: 10456455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinctive regulation of contact activation by antithrombin and C1-inhibitor on activated platelets and material surfaces.
    Bäck J; Lang MH; Elgue G; Kalbitz M; Sanchez J; Ekdahl KN; Nilsson B
    Biomaterials; 2009 Dec; 30(34):6573-80. PubMed ID: 19783299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro assessment of blood compatibility: residual and dynamic markers of cellular activation.
    Johnson G; Curry B; Cahalan L; Prater R; Beeler M; Gartner M; Biggerstaff J; Cahalan P
    J Biomater Appl; 2013 May; 27(8):925-36. PubMed ID: 22210807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalently immobilized thrombomodulin inhibits coagulation and complement activation of artificial surfaces in vitro.
    Sperling C; Salchert K; Streller U; Werner C
    Biomaterials; 2004 Sep; 25(21):5101-13. PubMed ID: 15109834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thrombin, kallikrein and complement C5b-9 adsorption on hydrophilic and hydrophobic titanium and glass after short time exposure to whole blood.
    Yahyapour N; Eriksson C; Malmberg P; Nygren H
    Biomaterials; 2004 Jul; 25(16):3171-6. PubMed ID: 14980412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood coagulation on biomaterials requires the combination of distinct activation processes.
    Sperling C; Fischer M; Maitz MF; Werner C
    Biomaterials; 2009 Sep; 30(27):4447-56. PubMed ID: 19535136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-attached PEO in the form of activated Pluronic with immobilized factor H reduces both coagulation and complement activation in a whole-blood model.
    Andersson J; Bexborn F; Klinth J; Nilsson B; Ekdahl KN
    J Biomed Mater Res A; 2006 Jan; 76(1):25-34. PubMed ID: 16250010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects on blood compatibility in vitro by combining a direct P2Y12 receptor inhibitor and heparin coating of stents.
    Christensen K; Larsson R; Emanuelsson H; Elgue G; Larsson A
    Platelets; 2006 Aug; 17(5):318-27. PubMed ID: 16928604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood plasma contact activation on silicon, titanium and aluminium.
    Arvidsson S; Askendal A; Tengvall P
    Biomaterials; 2007 Mar; 28(7):1346-54. PubMed ID: 17156838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new in vitro model to study interaction between whole blood and biomaterials. Studies of platelet and coagulation activation and the effect of aspirin.
    Hong J; Nilsson Ekdahl K; Reynolds H; Larsson R; Nilsson B
    Biomaterials; 1999 Apr; 20(7):603-11. PubMed ID: 10208402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hirudin versus heparin for use in whole blood in vitro biocompatibility models.
    Bexborn F; Engberg AE; Sandholm K; Mollnes TE; Hong J; Nilsson Ekdahl K
    J Biomed Mater Res A; 2009 Jun; 89(4):951-9. PubMed ID: 18470919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The creation of an antithrombotic surface by apyrase immobilization.
    Nilsson PH; Engberg AE; Bäck J; Faxälv L; Lindahl TL; Nilsson B; Ekdahl KN
    Biomaterials; 2010 Jun; 31(16):4484-91. PubMed ID: 20211488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoporesize affects complement activation.
    Ferraz N; Nilsson B; Hong J; Karlsson Ott M
    J Biomed Mater Res A; 2008 Dec; 87(3):575-81. PubMed ID: 18186072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro blood reactivity to hydroxylated and non-hydroxylated polymer surfaces.
    Sperling C; Maitz MF; Talkenberger S; Gouzy MF; Groth T; Werner C
    Biomaterials; 2007 Sep; 28(25):3617-25. PubMed ID: 17524475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ability of surface characteristics of materials to trigger leukocyte tissue factor expression.
    Fischer M; Sperling C; Tengvall P; Werner C
    Biomaterials; 2010 Mar; 31(9):2498-507. PubMed ID: 20035991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the in vitro biocompatibility of a novel carbon device for the treatment of sepsis.
    Sandeman SR; Howell CA; Phillips GJ; Lloyd AW; Davies JG; Mikhalovsky SV; Tennison SR; Rawlinson AP; Kozynchenko OP; Owen HL; Gaylor JD; Rouse JJ; Courtney JM
    Biomaterials; 2005 Dec; 26(34):7124-31. PubMed ID: 15967498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of human leukocytes on tantalum trabecular metal in comparison to commonly used orthopedic metal implant materials.
    Schildhauer TA; Peter E; Muhr G; Köller M
    J Biomed Mater Res A; 2009 Feb; 88(2):332-41. PubMed ID: 18286637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.