BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 1548294)

  • 1. Hyperglycemic versus normoglycemic stroke: topography of brain metabolites, intracellular pH, and infarct size.
    Wagner KR; Kleinholz M; de Courten-Myers GM; Myers RE
    J Cereb Blood Flow Metab; 1992 Mar; 12(2):213-22. PubMed ID: 1548294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of hyperglycemia on cerebral metabolism during hypoxia-ischemia in the immature rat.
    Vannucci RC; Brucklacher RM; Vannucci SJ
    J Cereb Blood Flow Metab; 1996 Sep; 16(5):1026-33. PubMed ID: 8784248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in extra- and intracellular pH in the brain during and following ischemia in hyperglycemic and in moderately hypoglycemic rats.
    Smith ML; von Hanwehr R; Siesjö BK
    J Cereb Blood Flow Metab; 1986 Oct; 6(5):574-83. PubMed ID: 3760041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effects of hypo- or hyperglycemia on brain metabolism in experimental cerebral ischemia].
    Nakatomi Y; Fujishima M; Yoshida F; Ibayashi S; Shiokawa O; Omae T
    No To Shinkei; 1983 Feb; 35(2):161-5. PubMed ID: 6849711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain tissue concentrations of ATP, phosphocreatine, lactate, and tissue pH in relation to reduced cerebral blood flow following experimental acute middle cerebral artery occlusion.
    Obrenovitch TP; Garofalo O; Harris RJ; Bordi L; Ono M; Momma F; Bachelard HS; Symon L
    J Cereb Blood Flow Metab; 1988 Dec; 8(6):866-74. PubMed ID: 3192651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain lactic acidosis and ischemic cell damage: 1. Biochemistry and neurophysiology.
    Rehncrona S; Rosén I; Siesjö BK
    J Cereb Blood Flow Metab; 1981; 1(3):297-311. PubMed ID: 7328145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemorrhagic infarct conversion in experimental stroke.
    de Courten-Myers GM; Kleinholz M; Holm P; DeVoe G; Schmitt G; Wagner KR; Myers RE
    Ann Emerg Med; 1992 Feb; 21(2):120-6. PubMed ID: 1739195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normoglycemia (not hypoglycemia) optimizes outcome from middle cerebral artery occlusion.
    de Courten-Myers GM; Kleinholz M; Wagner KR; Myers RE
    J Cereb Blood Flow Metab; 1994 Mar; 14(2):227-36. PubMed ID: 8113319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperglycemia and focal brain ischemia.
    Gisselsson L; Smith ML; Siesjö BK
    J Cereb Blood Flow Metab; 1999 Mar; 19(3):288-97. PubMed ID: 10078881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Focal and perifocal changes in tissue energy state during middle cerebral artery occlusion in normo- and hyperglycemic rats.
    Folbergrová J; Memezawa H; Smith ML; Siesjö BK
    J Cereb Blood Flow Metab; 1992 Jan; 12(1):25-33. PubMed ID: 1727140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of lactate accumulation on calcium content of ischemic and postischemic brain.
    MacMillan V
    J Cereb Blood Flow Metab; 1989 Oct; 9(5):640-5. PubMed ID: 2777933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of hyperglycemia on ischemic brain damage, local cerebral blood flow and ischemic cerebral edema.
    Yura S
    Hokkaido Igaku Zasshi; 1991 Jan; 66(1):1-15. PubMed ID: 2004735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of hyperglycemia on the time course of changes in energy metabolism and pH during global cerebral ischemia and reperfusion in rats: correlation of 1H and 31P NMR spectroscopy with fatty acid and excitatory amino acid levels.
    Widmer H; Abiko H; Faden AI; James TL; Weinstein PR
    J Cereb Blood Flow Metab; 1992 May; 12(3):456-68. PubMed ID: 1569139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal evolution of regional energy metabolism following focal cerebral ischemia in the rat.
    Nowicki JP; Assumel-Lurdin C; Duverger D; MacKenzie ET
    J Cereb Blood Flow Metab; 1988 Aug; 8(4):462-73. PubMed ID: 3392111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ischemia and reperfusion on lambda of the lumped constant of the [14C]deoxyglucose technique.
    Greenberg JH; Hamar J; Welsh FA; Harris V; Reivich M
    J Cereb Blood Flow Metab; 1992 Jan; 12(1):70-7. PubMed ID: 1727144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delayed neurologic deterioration following anoxia: brain mitochondrial and metabolic correlates.
    Wagner KR; Kleinholz M; Myers RE
    J Neurochem; 1989 May; 52(5):1407-17. PubMed ID: 2565372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional alterations in glucose consumption and metabolite levels during postischemic recovery in cat brain.
    Tanaka K; Welsh FA; Greenberg JH; O'Flynn R; Harris VA; Reivich M
    J Cereb Blood Flow Metab; 1985 Dec; 5(4):502-11. PubMed ID: 3932373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo uptake of [3H]nimodipine in focal cerebral ischemia: modulation by hyperglycemia.
    Osuga S; Hogan MJ
    J Cereb Blood Flow Metab; 1997 Oct; 17(10):1057-65. PubMed ID: 9346430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early reversal of acidosis and metabolic recovery following ischemia.
    Hoffman TL; LaManna JC; Pundik S; Selman WR; Whittingham TS; Ratcheson RA; Lust WD
    J Neurosurg; 1994 Oct; 81(4):567-73. PubMed ID: 7931590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of energy failure and dissipative K+ flux during ischemia: role of preischemic plasma glucose concentration.
    Ekholm A; Katsura K; Siesjö BK
    J Cereb Blood Flow Metab; 1993 Mar; 13(2):193-200. PubMed ID: 8436610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.