These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 15482979)

  • 1. Raman spectroscopy of graphite.
    Reich S; Thomsen C
    Philos Trans A Math Phys Eng Sci; 2004 Nov; 362(1824):2271-88. PubMed ID: 15482979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studying disorder in graphite-based systems by Raman spectroscopy.
    Pimenta MA; Dresselhaus G; Dresselhaus MS; Cançado LG; Jorio A; Saito R
    Phys Chem Chem Phys; 2007 Mar; 9(11):1276-91. PubMed ID: 17347700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersion of electron-phonon resonances in one-layer graphene and its demonstration in micro-Raman scattering.
    Strelchuk VV; Nikolenko AS; Gubanov VO; Biliy MM; Bulavin LA
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8671-5. PubMed ID: 23421263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman scattering of non-planar graphite: arched edges, polyhedral crystals, whiskers and cones.
    Tan P; Dimovski S; Gogotsi Y
    Philos Trans A Math Phys Eng Sci; 2004 Nov; 362(1824):2289-310. PubMed ID: 15482980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent anti-Stokes Raman scattering of two-phonon complexes in diamond.
    Kuroda T; Zhokhov PA; Watanabe K; Zheltikov AM; Sakoda K
    Opt Express; 2009 Nov; 17(23):20794-9. PubMed ID: 19997312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman spectra of graphene ribbons.
    Saito R; Furukawa M; Dresselhaus G; Dresselhaus MS
    J Phys Condens Matter; 2010 Aug; 22(33):334203. PubMed ID: 21386493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Second-order overtone and combination Raman modes of graphene layers in the range of 1690-2150 cm(-1).
    Cong C; Yu T; Saito R; Dresselhaus GF; Dresselhaus MS
    ACS Nano; 2011 Mar; 5(3):1600-5. PubMed ID: 21344883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman 2D-band splitting in graphene: theory and experiment.
    Frank O; Mohr M; Maultzsch J; Thomsen C; Riaz I; Jalil R; Novoselov KS; Tsoukleri G; Parthenios J; Papagelis K; Kavan L; Galiotis C
    ACS Nano; 2011 Mar; 5(3):2231-9. PubMed ID: 21319849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes.
    Kneipp K; Kneipp H; Corio P; Brown SD; Shafer K; Motz J; Perelman LT; Hanlon EB; Marucci A; Dresselhaus G; Dresselhaus MS
    Phys Rev Lett; 2000 Apr; 84(15):3470-3. PubMed ID: 11019117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-resonant background suppression by destructive interference in coherent anti-Stokes Raman scattering spectroscopy.
    Konorov SO; Blades MW; Turner RF
    Opt Express; 2011 Dec; 19(27):25925-34. PubMed ID: 22274181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman spectroscopy with graphenated anodized aluminum oxide substrates.
    Banerjee A; Li RQ; Grebel H
    Nanotechnology; 2009 Jul; 20(29):295502. PubMed ID: 19567957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonant Raman scattering in ZnO:Mn and ZnO:Mn:Al thin films grown by RF sputtering.
    Cerqueira MF; Vasilevskiy MI; Oliveira F; Rolo AG; Viseu T; Ayres de Campos J; Alves E; Correia R
    J Phys Condens Matter; 2011 Aug; 23(33):334205. PubMed ID: 21813947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonant Raman spectroscopy of nanotubes.
    Thomsen C; Reich S; Maultzsch J
    Philos Trans A Math Phys Eng Sci; 2004 Nov; 362(1824):2337-59. PubMed ID: 15482982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman study of ion-induced defects in N-layer graphene.
    Jorio A; Lucchese MM; Stavale F; Ferreira EH; Moutinho MV; Capaz RB; Achete CA
    J Phys Condens Matter; 2010 Aug; 22(33):334204. PubMed ID: 21386494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-frequency Raman and Brillouin spectroscopy from graphite, diamond and diamond-like carbons, fullerenes and nanotubes.
    Beghi MG; Bottani CE
    Philos Trans A Math Phys Eng Sci; 2004 Nov; 362(1824):2513-35. PubMed ID: 15482989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of chemical interfaces in coherent anti-Stokes Raman scattering microscopy: Dk-CARS. I. Axial interfaces.
    Gachet D; Rigneault H
    J Opt Soc Am A Opt Image Sci Vis; 2011 Dec; 28(12):2519-30. PubMed ID: 22193265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of metalloporphyrins with high sensitivity using graphene-enhanced resonance Raman scattering.
    Kim BH; Kim D; Song S; Park D; Kang IS; Jeong DH; Jeon S
    Langmuir; 2014 Mar; 30(10):2960-7. PubMed ID: 24559429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal coherent control of coherent anti-Stokes Raman scattering: signal enhancement and background elimination.
    Gao F; Shuang F; Shi J; Rabitz H; Wang H; Cheng JX
    J Chem Phys; 2012 Apr; 136(14):144114. PubMed ID: 22502508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double resonant raman scattering in graphite.
    Thomsen C; Reich S
    Phys Rev Lett; 2000 Dec; 85(24):5214-7. PubMed ID: 11102224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Curvature-induced D-band Raman scattering in folded graphene.
    Gupta AK; Nisoli C; Lammert PE; Crespi VH; Eklund PC
    J Phys Condens Matter; 2010 Aug; 22(33):334205. PubMed ID: 21386495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.