These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 1548305)

  • 1. Effects of endothelium-derived nitric oxide on cerebral circulation during normoxia and hypoxia in the rat.
    Koźniewska E; Oseka M; Styś T
    J Cereb Blood Flow Metab; 1992 Mar; 12(2):311-7. PubMed ID: 1548305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebral blood flow during inhibition of brain nitric oxide synthase activity in normal, hypertensive, and stroke-prone rats.
    Izuta M; Clavier N; Kirsch JR; Traystman RJ
    Stroke; 1995 Jun; 26(6):1079-85. PubMed ID: 7539167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelium-derived relaxing factor inhibits hypoxic pulmonary vasoconstriction in rats.
    Liu SF; Crawley DE; Barnes PJ; Evans TW
    Am Rev Respir Dis; 1991 Jan; 143(1):32-7. PubMed ID: 1986681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracarotid infusion of the nitric oxide synthase inhibitor, L-NMMA, modestly decreases cerebral blood flow in human subjects.
    Joshi S; Young WL; Duong DH; Ostapkovich ND; Aagaard BD; Hashimoto T; Pile-Spellman J
    Anesthesiology; 2000 Sep; 93(3):699-707. PubMed ID: 10969303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide mediates hypoxia-induced cerebral vasodilation in humans.
    Van Mil AH; Spilt A; Van Buchem MA; Bollen EL; Teppema L; Westendorp RG; Blauw GJ
    J Appl Physiol (1985); 2002 Mar; 92(3):962-6. PubMed ID: 11842027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of L-NMMA, cromakalim, and glibenclamide on cerebral blood flow in hypercapnia and hypoxia.
    Reid JM; Davies AG; Ashcroft FM; Paterson DJ
    Am J Physiol; 1995 Sep; 269(3 Pt 2):H916-22. PubMed ID: 7573535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia, alpha 2-adrenergic, and nitric oxide-dependent interactions on canine cerebral blood flow.
    McPherson RW; Koehler RC; Traystman RJ
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H476-82. PubMed ID: 7511347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of nitric oxide blockade by NG-nitro-L-arginine on cerebral blood flow response to changes in carbon dioxide tension.
    Wang Q; Paulson OB; Lassen NA
    J Cereb Blood Flow Metab; 1992 Nov; 12(6):947-53. PubMed ID: 1400648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelium-derived nitric oxide regulates systemic and pulmonary vascular resistance during acute hypoxia in humans.
    Blitzer ML; Loh E; Roddy MA; Stamler JS; Creager MA
    J Am Coll Cardiol; 1996 Sep; 28(3):591-6. PubMed ID: 8772744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of nitric oxide in the regulation of cerebral blood flow.
    Buchanan JE; Phillis JW
    Brain Res; 1993 May; 610(2):248-55. PubMed ID: 8319087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of nitric oxide in regulation of cerebral microvascular tone and autoregulation of cerebral blood flow in cats.
    Kobari M; Fukuuchi Y; Tomita M; Tanahashi N; Takeda H
    Brain Res; 1994 Dec; 667(2):255-62. PubMed ID: 7697363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of endothelium-derived relaxing factor in regulation of renal hemodynamic responses.
    Tolins JP; Palmer RM; Moncada S; Raij L
    Am J Physiol; 1990 Mar; 258(3 Pt 2):H655-62. PubMed ID: 2156453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basal cerebral blood flow is dependent on the nitric oxide pathway in elderly but not in young healthy men.
    Kamper AM; Spilt A; de Craen AJ; van Buchem MA; Westendorp RG; Blauw GJ
    Exp Gerontol; 2004 Aug; 39(8):1245-8. PubMed ID: 15288698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide mediation of chemoregulation but not autoregulation of cerebral blood flow in primates.
    Thompson BG; Pluta RM; Girton ME; Oldfield EH
    J Neurosurg; 1996 Jan; 84(1):71-8. PubMed ID: 8613839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of intravenous arginine administration on cerebral circulation in the rat.
    Nogawa S
    Keio J Med; 1995 Mar; 44(1):19-29. PubMed ID: 7760532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide contributes to cerebrovascular shear-mediated dilatation but not steady-state cerebrovascular reactivity to carbon dioxide.
    Hoiland RL; Caldwell HG; Carr JMJR; Howe CA; Stacey BS; Dawkins T; Wakeham DJ; Tremblay JC; Tymko MM; Patrician A; Smith KJ; Sekhon MS; MacLeod DB; Green DJ; Bailey DM; Ainslie PN
    J Physiol; 2022 Mar; 600(6):1385-1403. PubMed ID: 34904229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelium-derived relaxing factor activity in rat lung during hypoxic pulmonary vascular remodeling.
    Zhao L; Crawley DE; Hughes JM; Evans TW; Winter RJ
    J Appl Physiol (1985); 1993 Mar; 74(3):1061-5. PubMed ID: 8482643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of nitric oxide synthesis induces a significant reduction in local cerebral blood flow in the rat.
    Tanaka K; Gotoh F; Gomi S; Takashima S; Mihara B; Shirai T; Nogawa S; Nagata E
    Neurosci Lett; 1991 Jun; 127(1):129-32. PubMed ID: 1881609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the endogenous nitric oxide in the vasodilatory tone and CO2 responsiveness of the rostral ventrolateral medulla microcirculation in the rat.
    Wołk R; Nowicki D; Siemińska J; Trzebski A
    J Physiol Pharmacol; 1995 Jun; 46(2):127-39. PubMed ID: 7670122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action of carbon dioxide on hypoxic pulmonary vasoconstriction in the rat lung: evidence against specific endothelium-derived relaxing factor-mediated vasodilation.
    Baudouin SV; Evans TW
    Crit Care Med; 1993 May; 21(5):740-6. PubMed ID: 8482095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.