These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 15484444)

  • 1. Comparison of two exploratory data analysis methods for fMRI: unsupervised clustering versus independent component analysis.
    Meyer-Baese A; Wismueller A; Lange O
    IEEE Trans Inf Technol Biomed; 2004 Sep; 8(3):387-98. PubMed ID: 15484444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-free functional MRI analysis based on unsupervised clustering.
    Wismüller A; Meyer-Bäse A; Lange O; Auer D; Reiser MF; Sumners D
    J Biomed Inform; 2004 Feb; 37(1):10-8. PubMed ID: 15016382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-free functional MRI analysis using topographic independent component analysis.
    Meyer-Bäse A; Lange O; Wismüller A; Ritter H
    Int J Neural Syst; 2004 Aug; 14(4):217-28. PubMed ID: 15372699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SACICA: a sparse approximation coefficient-based ICA model for functional magnetic resonance imaging data analysis.
    Wang N; Zeng W; Chen L
    J Neurosci Methods; 2013 May; 216(1):49-61. PubMed ID: 23563324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of fMRI data using improved self-organizing mapping and spatio-temporal metric hierarchical clustering.
    Liao W; Chen H; Yang Q; Lei X
    IEEE Trans Med Imaging; 2008 Oct; 27(10):1472-83. PubMed ID: 18815099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validating the performance of one-time decomposition for fMRI analysis using ICA with automatic target generation process.
    Yao S; Zeng W; Wang N; Chen L
    Magn Reson Imaging; 2013 Jul; 31(6):970-5. PubMed ID: 23587929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing consistency of independent components: an fMRI illustration.
    Ylipaavalniemi J; Vigário R
    Neuroimage; 2008 Jan; 39(1):169-80. PubMed ID: 17931888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissecting cognitive stages with time-resolved fMRI data: a comparison of fuzzy clustering and independent component analysis.
    Smolders A; De Martino F; Staeren N; Scheunders P; Sijbers J; Goebel R; Formisano E
    Magn Reson Imaging; 2007 Jul; 25(6):860-8. PubMed ID: 17482412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsupervised learning and mapping of active brain functional MRI signals based on hidden semi-Markov event sequence models.
    Faisan S; Thoraval L; Armspach JP; Metz-Lutz MN; Heitz F
    IEEE Trans Med Imaging; 2005 Feb; 24(2):263-76. PubMed ID: 15707252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
    Ge R; Wang Y; Zhang J; Yao L; Zhang H; Long Z
    J Neurosci Methods; 2016 Apr; 263():103-14. PubMed ID: 26880161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of multi-echo ICA denoising for task based fMRI studies: Block designs, rapid event-related designs, and cardiac-gated fMRI.
    Gonzalez-Castillo J; Panwar P; Buchanan LC; Caballero-Gaudes C; Handwerker DA; Jangraw DC; Zachariou V; Inati S; Roopchansingh V; Derbyshire JA; Bandettini PA
    Neuroimage; 2016 Nov; 141():452-468. PubMed ID: 27475290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A combined SPM-ICA approach to fMRI.
    Penney TJ; Koles ZJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():723-6. PubMed ID: 17946854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parcellation of fMRI datasets with ICA and PLS--a data driven approach.
    Ji Y; Hervé PY; Aickelin U; Pitiot A
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):984-91. PubMed ID: 20426084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separating 4D multi-task fMRI data of multiple subjects by independent component analysis with projection.
    Long Z; Li R; Wen X; Jin Z; Chen K; Yao L
    Magn Reson Imaging; 2013 Jan; 31(1):60-74. PubMed ID: 22898701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evaluation of independent component analyses with an application to resting-state fMRI.
    Risk BB; Matteson DS; Ruppert D; Eloyan A; Caffo BS
    Biometrics; 2014 Mar; 70(1):224-36. PubMed ID: 24350655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian analysis of fMRI data with ICA based spatial prior.
    Bathula DR; Tagare HD; Staib LH; Papademetris X; Schultz RT; Duncan JS
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):246-54. PubMed ID: 18982612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clustering fMRI data with a robust unsupervised learning algorithm for neuroscience data mining.
    Aljobouri HK; Jaber HA; Koçak OM; Algin O; Çankaya I
    J Neurosci Methods; 2018 Apr; 299():45-54. PubMed ID: 29471065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used?
    Esposito F; Formisano E; Seifritz E; Goebel R; Morrone R; Tedeschi G; Di Salle F
    Hum Brain Mapp; 2002 Jul; 16(3):146-57. PubMed ID: 12112768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural networks approach to clustering of activity in fMRI data.
    Voultsidou M; Dodel S; Herrmann JM
    IEEE Trans Med Imaging; 2005 Aug; 24(8):987-96. PubMed ID: 16092331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of PCA and ICA of simulated ERPs: Promax vs. Infomax rotations.
    Dien J; Khoe W; Mangun GR
    Hum Brain Mapp; 2007 Aug; 28(8):742-63. PubMed ID: 17133395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.