These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 15484444)

  • 21. Key issues in decomposing fMRI during naturalistic and continuous music experience with independent component analysis.
    Cong F; Puoliväli T; Alluri V; Sipola T; Burunat I; Toiviainen P; Nandi AK; Brattico E; Ristaniemi T
    J Neurosci Methods; 2014 Feb; 223():74-84. PubMed ID: 24333752
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Delay correlation subspace decomposition algorithm and its application in fMRI.
    Chen H; Yao D; Chen W; Chen L
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1647-51. PubMed ID: 16350921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of event-related fMRI data using best clustering bases.
    Meyer FG; Chinrungrueng J
    Inf Process Med Imaging; 2003 Jul; 18():623-34. PubMed ID: 15344493
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of FMRI data using an integrated principal component analysis and supervised affinity propagation clustering approach.
    Zhang J; Tuo X; Yuan Z; Liao W; Chen H
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3184-96. PubMed ID: 21859596
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study of temporal stationarity and spatial consistency of fMRI noise using independent component analysis.
    Turner GH; Twieg DB
    IEEE Trans Med Imaging; 2005 Jun; 24(6):712-8. PubMed ID: 15957595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tensor clustering on outer-product of coefficient and component matrices of independent component analysis for reliable functional magnetic resonance imaging data decomposition.
    Hu G; Zhang Q; Waters AB; Li H; Zhang C; Wu J; Cong F; Nickerson LD
    J Neurosci Methods; 2019 Sep; 325():108359. PubMed ID: 31306718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Discovering structure in the space of activation profiles in fMRI.
    Lashkari D; Vul E; Kanwisher N; Golland P
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):1016-24. PubMed ID: 18979845
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unsupervised spatiotemporal analysis of fMRI data using graph-based visualizations of self-organizing maps.
    Katwal SB; Gore JC; Marois R; Rogers BP
    IEEE Trans Biomed Eng; 2013 Sep; 60(9):2472-83. PubMed ID: 23613020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploratory analysis of brain connectivity with ICA.
    Rajapakse JC; Tan CL; Zheng X; Mukhopadhyay S; Yang K
    IEEE Eng Med Biol Mag; 2006; 25(2):102-11. PubMed ID: 16568942
    [No Abstract]   [Full Text] [Related]  

  • 30. An integrated neighborhood correlation and hierarchical clustering approach of functional MRI.
    Chen H; Yuan H; Yao D; Chen L; Chen W
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):452-8. PubMed ID: 16532771
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Task-evoked brain functional magnetic susceptibility mapping by independent component analysis (χICA).
    Chen Z; Calhoun VD
    J Neurosci Methods; 2016 Mar; 261():161-71. PubMed ID: 26778607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contributive sources analysis: a measure of neural networks' contribution to brain activations.
    Beldzik E; Domagalik A; Daselaar S; Fafrowicz M; Froncisz W; Oginska H; Marek T
    Neuroimage; 2013 Aug; 76():304-12. PubMed ID: 23523811
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sparse geostatistical analysis in clustering fMRI time series.
    Ye J; Lazar NA; Li Y
    J Neurosci Methods; 2011 Aug; 199(2):336-45. PubMed ID: 21641934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A K-means multivariate approach for clustering independent components from magnetoencephalographic data.
    Spadone S; de Pasquale F; Mantini D; Della Penna S
    Neuroimage; 2012 Sep; 62(3):1912-23. PubMed ID: 22634861
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonlinear estimation and modeling of fMRI data using spatio-temporal support vector regression.
    Wang YM; Schultz RT; Constable RT; Staib LH
    Inf Process Med Imaging; 2003 Jul; 18():647-59. PubMed ID: 15344495
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Performance of blind source separation algorithms for fMRI analysis using a group ICA method.
    Correa N; Adali T; Calhoun VD
    Magn Reson Imaging; 2007 Jun; 25(5):684-94. PubMed ID: 17540281
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Blind source separation of fMRI data by means of factor analytic transformations.
    Langers DR
    Neuroimage; 2009 Aug; 47(1):77-87. PubMed ID: 19362596
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Source density-driven independent component analysis approach for fMRI data.
    Hong B; Pearlson GD; Calhoun VD
    Hum Brain Mapp; 2005 Jul; 25(3):297-307. PubMed ID: 15832316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of dynamic susceptibility contrast MRI time series based on unsupervised clustering methods.
    Meyer-Baese A; Lange O; Wismueller A; Hurdal MK
    IEEE Trans Inf Technol Biomed; 2007 Sep; 11(5):563-73. PubMed ID: 17912973
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A semi-blind online dictionary learning approach for fMRI data.
    Long Z; Liu L; Gao Z; Chen M; Yao L
    J Neurosci Methods; 2019 Jul; 323():1-12. PubMed ID: 31085215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.