These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15484741)

  • 1. Identification of the odour and chemical composition of alumina refinery air emissions.
    Coffey PS; Ioppolo-Armanios M
    Water Sci Technol; 2004; 50(4):39-47. PubMed ID: 15484741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Air emissions from Wagerup alumina refinery and community symptoms: an environmental case study.
    Donoghue AM; Cullen MR
    J Occup Environ Med; 2007 Sep; 49(9):1027-39. PubMed ID: 17848859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Olfactometric approach for the evaluation of citizens' exposure to industrial emissions in the city of Terni, Italy.
    Capelli L; Sironi S; Del Rosso R; Céntola P; Rossi A; Austeri C
    Sci Total Environ; 2011 Jan; 409(3):595-603. PubMed ID: 21106227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Odour intensity and hedonic tone--important parameters to describe odour annoyance to residents?
    Both R; Sucker K; Winneke G; Koch E
    Water Sci Technol; 2004; 50(4):83-92. PubMed ID: 15484746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Globally sustainable manganese metal production and use.
    Hagelstein K
    J Environ Manage; 2009 Sep; 90(12):3736-40. PubMed ID: 19467569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic ozonation for odour removal of high temperature alumina refinery condensate.
    Wang X; Guan J; Stuetz RM
    Water Sci Technol; 2012; 66(8):1781-6. PubMed ID: 22907465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directive on odour in ambient air: an established system of odour measurement and odour regulation in Germany.
    Both R
    Water Sci Technol; 2001; 44(9):119-26. PubMed ID: 11762451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Health risk assessments for alumina refineries.
    Donoghue AM; Coffey PS
    J Occup Environ Med; 2014 May; 56(5 Suppl):S18-22. PubMed ID: 24806721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a health effects-based priority ranking system for air emissions reductions from oil refineries in Canada.
    Gower S; Hicks J; Shortreed J; Craig L; McColl S
    J Toxicol Environ Health A; 2008; 71(1):81-5. PubMed ID: 18080898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring of hydrocarbon emissions in a petroleum refinery.
    Rao P; Ankam S; Ansari M; Gavane AG; Kumar A; Pandit VI; Nema P
    Environ Monit Assess; 2005 Sep; 108(1-3):123-32. PubMed ID: 16160782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal variation of toxic benzene emissions in petroleum refinery.
    Rao PS; Ansari MF; Gavane AG; Pandit VI; Nema P; Devotta S
    Environ Monit Assess; 2007 May; 128(1-3):323-8. PubMed ID: 17057993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Case study of polychlorinated naphthalene emissions and factors influencing emission variations in secondary aluminum production.
    Jiang X; Liu G; Wang M; Liu W; Tang C; Li L; Zheng M
    J Hazard Mater; 2015 Apr; 286():545-52. PubMed ID: 25637821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model to investigate energy and greenhouse gas emissions implications of refining petroleum: impacts of crude quality and refinery configuration.
    Abella JP; Bergerson JA
    Environ Sci Technol; 2012 Dec; 46(24):13037-47. PubMed ID: 23013493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study on the mechanisms of hazardous air pollutant emissions from green sand casting].
    Wang YJ; Zhao Q; Zhang Y; Hong CP; Huang TY
    Huan Jing Ke Xue; 2010 Oct; 31(10):2507-11. PubMed ID: 21229769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiological assessment for bauxite mining and alumina refining.
    O'Connor BH; Donoghue AM; Manning TJ; Chesson BJ
    Ann Occup Hyg; 2013 Jan; 57(1):63-76. PubMed ID: 22952386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Olfactometry and Oil Refinery Odour Samples: Application of a New Method for Occupational Risk Assessment.
    Spinazzè A; Polvara E; Cattaneo A; Invernizzi M; Cavallo DM; Sironi S
    Toxics; 2022 Apr; 10(5):. PubMed ID: 35622616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using a source-receptor approach to characterise VOC behaviour in a French urban area influenced by industrial emissions. Part II: source contribution assessment using the Chemical Mass Balance (CMB) model.
    Badol C; Locoge N; Galloo JC
    Sci Total Environ; 2008 Jan; 389(2-3):429-40. PubMed ID: 17936336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Air pollution by odour--sources, identification and control.
    Shukla NP
    Rev Environ Health; 1991; 9(4):239-44. PubMed ID: 1842457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pragmatic evaluation of odour emissions from a rendering plant in southern Brazil.
    Vieira MM; Schirmer WN; de Melo Lisboa H; Belli Filho P; Guillot JM
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):24115-24124. PubMed ID: 27640055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expansion of the Petroleum Refinery Life Cycle Inventory Model to Support Characterization of a Full Suite of Commonly Tracked Impact Potentials.
    Young B; Hottle T; Hawkins T; Jamieson M; Cooney G; Motazedi K; Bergerson J
    Environ Sci Technol; 2019 Feb; 53(4):2238-2248. PubMed ID: 30717588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.