These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15484755)

  • 1. Interlaboratory comparison of olfactometry in Japan.
    Higuchi T; Masuda J
    Water Sci Technol; 2004; 50(4):147-52. PubMed ID: 15484755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of uncertainty in olfactometry.
    Higuchi T
    Water Sci Technol; 2009; 59(7):1409-13. PubMed ID: 19381007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlaboratory comparison of dynamic olfactometry in Central Europe 2000.
    Mannebeck D; Mannebeck H
    Water Sci Technol; 2001; 44(9):27-32. PubMed ID: 11762473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Difference in the odor concentrations measured by the triangle odor bag method and dynamic olfactometry.
    Ueno H; Amano S; Merecka B; Kośmider J
    Water Sci Technol; 2009; 59(7):1339-42. PubMed ID: 19380999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proficiency testing as the key element in implementing EN13275 olfactometry.
    Van Harreveld AP; Mannebeck D; Maxeiner B
    Water Sci Technol; 2009; 59(8):1649-55. PubMed ID: 19403979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring of biological odour filtration in closed environments with olfactometry and an electronic nose.
    Willers H; de Gijsel P; Ogink N; D'Amico A; Martinelli E; Di Natale C; van Ras N; van der Waarde J
    Water Sci Technol; 2004; 50(4):93-100. PubMed ID: 15484747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of field olfactometers in a controlled chamber using hydrogen sulfide as the test odorant.
    McGinley MA; McGinley CM
    Water Sci Technol; 2004; 50(4):75-82. PubMed ID: 15484745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of olfactometric measurement accuracy and repeatability by optimization of panel selection procedures.
    Capelli L; Sironi S; Del Rosso R; Céntola P; Bonati S
    Water Sci Technol; 2010; 61(5):1267-78. PubMed ID: 20220249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H2S, VOC, TOC, electronic noses and odour concentration: use and comparison of different parameters for emission measurement on air treatment systems.
    Franke W; Frechen FB; Giebel S
    Water Sci Technol; 2009; 59(9):1721-6. PubMed ID: 19448306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scents in the stack: olfactometric proficiency testing with an emission simulation apparatus.
    Stöckel S; Cordes J; Stoffels B; Wildanger D
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):24787-24797. PubMed ID: 29926329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ambient odour testing of concentrated animal feeding operations using field and laboratory olfactometers.
    Newby BD; McGinley MA
    Water Sci Technol; 2004; 50(4):109-14. PubMed ID: 15484749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multielement trace determination in SiC powders: assessment of interlaboratory comparisons aimed at the validation and standardization of analytical procedures with direct solid sampling based on ETV ICP OES and DC arc OES.
    Matschat R; Hassler J; Traub H; Dette A
    Anal Bioanal Chem; 2005 Dec; 383(7-8):1060-74. PubMed ID: 16079974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Determination of the threshold value of smell of the substances in evaluation of their maximal single permissible concentrations in the air and their probability assessment by the method of probit-analysis].
    Andreeshcheva NG
    Gig Sanit; 1977 Aug; (8):69-74. PubMed ID: 590801
    [No Abstract]   [Full Text] [Related]  

  • 14. Detection of the dynamics of odour emissions from pig farms using dynamic olfactometry and an electronic odour sensor.
    Brose G; Gallmann E; Hartung E; Jungbluth T
    Water Sci Technol; 2001; 44(9):59-64. PubMed ID: 11762484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applicability of sniffing team observations: experience of field measurements.
    Van Langenhove H; Van Broeck G
    Water Sci Technol; 2001; 44(9):65-70. PubMed ID: 11762485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Chemical Sensors and Olfactometry Method in Ecological Audits of Degraded Areas.
    Kulig A; Szyłak-Szydłowski M; Wiśniewska M
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interlaboratory quality control and status of n-hexane biological monitoring in Japan.
    Kawamoto T; Kodama Y; Kohno K
    Arch Environ Contam Toxicol; 1995 May; 28(4):529-36. PubMed ID: 7755406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Odour concentrations prediction based on odorants concentrations from biosolid emissions.
    Barczak RJ; Możaryn J; Fisher RM; Stuetz RM
    Environ Res; 2022 Nov; 214(Pt 2):113871. PubMed ID: 35839906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NIST/NCI Micronutrients Measurement Quality Assurance Program: measurement repeatabilities and reproducibilities for fat-soluble vitamin-related compounds in human sera.
    Duewer DL; Thomas JB; Kline MC; MacCrehan WA; Schaffer R; Sharpless KE; May WE; Crowell JA
    Anal Chem; 1997 Apr; 69(7):1406-13. PubMed ID: 9105181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of odour emission rates measured from various sources using two sampling devices.
    Hudson N; Ayoko GA; Dunlop M; Duperouzel D; Burrell D; Bell K; Gallagher E; Nicholas P; Heinrich N
    Bioresour Technol; 2009 Jan; 100(1):118-24. PubMed ID: 18625551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.