These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. On embedded bifurcation structure in some discretized vector fields. Kang H; Tsuda I Chaos; 2009 Sep; 19(3):033132. PubMed ID: 19792012 [TBL] [Abstract][Full Text] [Related]
6. The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations. Storace M; Linaro D; de Lange E Chaos; 2008 Sep; 18(3):033128. PubMed ID: 19045466 [TBL] [Abstract][Full Text] [Related]
7. Synchronization in large directed networks of coupled phase oscillators. Restrepo JG; Ott E; Hunt BR Chaos; 2006 Mar; 16(1):015107. PubMed ID: 16599773 [TBL] [Abstract][Full Text] [Related]
8. A network of electronic neural oscillators reproduces the dynamics of the periodically forced pyloric pacemaker group. Denker M; Szücs A; Pinto RD; Abarbanel HD; Selverston AI IEEE Trans Biomed Eng; 2005 May; 52(5):792-8. PubMed ID: 15887528 [TBL] [Abstract][Full Text] [Related]
9. Block structured dynamics and neuronal coding. González-Miranda JM Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051922. PubMed ID: 16383660 [TBL] [Abstract][Full Text] [Related]
10. Nonlinear-dynamics theory of up-down transitions in neocortical neural networks. Ghorbani M; Mehta M; Bruinsma R; Levine AJ Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021908. PubMed ID: 22463245 [TBL] [Abstract][Full Text] [Related]
11. Phase resetting and coupling of noisy neural oscillators. Ermentrout B; Saunders D J Comput Neurosci; 2006 Apr; 20(2):179-90. PubMed ID: 16518571 [TBL] [Abstract][Full Text] [Related]
12. An analysis of globally connected active rotators with excitatory and inhibitory connections having different time constants using the nonlinear Fokker-Planck equations. Kanamaru T; Sekine M IEEE Trans Neural Netw; 2004 Sep; 15(5):1009-17. PubMed ID: 15484878 [TBL] [Abstract][Full Text] [Related]
13. Introduction: stability and pattern formation in networks of dynamical systems. Boccaletti S; Pecora LM Chaos; 2006 Mar; 16(1):015101. PubMed ID: 16599767 [No Abstract] [Full Text] [Related]
14. Complex dynamics of a single neuron model. Popovych S; Gail A; Schropp J Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041914. PubMed ID: 17155103 [TBL] [Abstract][Full Text] [Related]
15. Delayed transiently chaotic neural networks and their application. Chen SS Chaos; 2009 Sep; 19(3):033125. PubMed ID: 19792005 [TBL] [Abstract][Full Text] [Related]
16. Experimental study of electrical FitzHugh-Nagumo neurons with modified excitability. Binczak S; Jacquir S; Bilbault JM; Kazantsev VB; Nekorkin VI Neural Netw; 2006 Jun; 19(5):684-93. PubMed ID: 16182512 [TBL] [Abstract][Full Text] [Related]
17. Dynamical robustness of coupled heterogeneous oscillators. Tanaka G; Morino K; Daido H; Aihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052906. PubMed ID: 25353860 [TBL] [Abstract][Full Text] [Related]
18. Synchronization in networks with random interactions: theory and applications. Feng J; Jirsa VK; Ding M Chaos; 2006 Mar; 16(1):015109. PubMed ID: 16599775 [TBL] [Abstract][Full Text] [Related]
19. Synchronization in asymmetrically coupled networks with node balance. Belykh I; Belykh V; Hasler M Chaos; 2006 Mar; 16(1):015102. PubMed ID: 16599768 [TBL] [Abstract][Full Text] [Related]
20. Relating the sequential dynamics of excitatory neural networks to synaptic cellular automata. Nekorkin VI; Dmitrichev AS; Kasatkin DV; Afraimovich VS Chaos; 2011 Dec; 21(4):043124. PubMed ID: 22225361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]