These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 15484923)
1. Constrained motion control of flexible robot manipulators based on recurrent neural networks. Tian L; Wang J; Mao Z IEEE Trans Syst Man Cybern B Cybern; 2004 Jun; 34(3):1541-52. PubMed ID: 15484923 [TBL] [Abstract][Full Text] [Related]
2. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics. Wai RJ; Yang ZW IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015 [TBL] [Abstract][Full Text] [Related]
3. Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach. Yoo SJ; Park JB; Choi YH IEEE Trans Neural Netw; 2008 Oct; 19(10):1712-26. PubMed ID: 18842476 [TBL] [Abstract][Full Text] [Related]
4. Robust GRBF static neurocontroller with switch logic for control of robot manipulators. Mulero-Martínez JI IEEE Trans Neural Netw Learn Syst; 2012 Jul; 23(7):1053-64. PubMed ID: 24807132 [TBL] [Abstract][Full Text] [Related]
5. Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulators. Li Z; Ge SS; Ming A IEEE Trans Syst Man Cybern B Cybern; 2007 Jun; 37(3):607-16. PubMed ID: 17550115 [TBL] [Abstract][Full Text] [Related]
6. Indirect iterative learning control for a discrete visual servo without a camera-robot model. Jiang P; Bamforth LC; Feng Z; Baruch JE; Chen Y IEEE Trans Syst Man Cybern B Cybern; 2007 Aug; 37(4):863-76. PubMed ID: 17702285 [TBL] [Abstract][Full Text] [Related]
7. A primal-dual neural network for online resolving constrained kinematic redundancy in robot motion control. Xia YS; Feng G; Wang J IEEE Trans Syst Man Cybern B Cybern; 2005 Feb; 35(1):54-64. PubMed ID: 15719933 [TBL] [Abstract][Full Text] [Related]
8. Robust adaptive control of cooperating mobile manipulators with relative motion. Li Z; Tao PY; Ge SS; Adams M; Wijesoma WS IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):103-16. PubMed ID: 19150761 [TBL] [Abstract][Full Text] [Related]
9. Recurrent fuzzy neural network backstepping control for the prescribed output tracking performance of nonlinear dynamic systems. Han SI; Lee JM ISA Trans; 2014 Jan; 53(1):33-43. PubMed ID: 24055100 [TBL] [Abstract][Full Text] [Related]
10. A double-loop structure in the adaptive generalized predictive control algorithm for control of robot end-point contact force. Wen S; Zhu J; Li X; Chen S ISA Trans; 2014 Sep; 53(5):1603-8. PubMed ID: 24973336 [TBL] [Abstract][Full Text] [Related]
11. Advanced Interval Type-2 Fuzzy Sliding Mode Control for Robot Manipulator. Hwang JH; Kang YC; Park JW; Kim DW Comput Intell Neurosci; 2017; 2017():9640849. PubMed ID: 28280505 [TBL] [Abstract][Full Text] [Related]
12. Neural network control of multifingered robot hands using visual feedback. Zhao Y; Cheah CC IEEE Trans Neural Netw; 2009 May; 20(5):758-67. PubMed ID: 19369155 [TBL] [Abstract][Full Text] [Related]
13. Fuzzy-neural-network inherited sliding-mode control for robot manipulator including actuator dynamics. Wai RJ; Muthusamy R IEEE Trans Neural Netw Learn Syst; 2013 Feb; 24(2):274-87. PubMed ID: 24808281 [TBL] [Abstract][Full Text] [Related]
14. A robust position/force learning controller of manipulators via nonlinear Hinfinity control and neural networks. Hwang MC; Hu X IEEE Trans Syst Man Cybern B Cybern; 2000; 30(2):310-21. PubMed ID: 18244757 [TBL] [Abstract][Full Text] [Related]
15. RCMAC hybrid control for MIMO uncertain nonlinear systems using sliding-mode technology. Lin CM; Chen LY; Chen CH IEEE Trans Neural Netw; 2007 May; 18(3):708-20. PubMed ID: 17526338 [TBL] [Abstract][Full Text] [Related]
16. GPI based velocity/force observer design for robot manipulators. Gutiérrez-Giles A; Arteaga-Pérez MA ISA Trans; 2014 Jul; 53(4):929-38. PubMed ID: 24780160 [TBL] [Abstract][Full Text] [Related]
17. Robustly stable adaptive control of a tandem of master-slave robotic manipulators with force reflection by using a multiestimation scheme. Ibeas A; de la Sen M IEEE Trans Syst Man Cybern B Cybern; 2006 Oct; 36(5):1162-79. PubMed ID: 17036821 [TBL] [Abstract][Full Text] [Related]
18. A neural network controller for the path tracking control of a hopping robot involving time delays. Chaitanya VS; Reddy MS Int J Neural Syst; 2006 Feb; 16(1):47-62. PubMed ID: 16496438 [TBL] [Abstract][Full Text] [Related]
19. Autonomous learning in humanoid robotics through mental imagery. Di Nuovo AG; Marocco D; Di Nuovo S; Cangelosi A Neural Netw; 2013 May; 41():147-55. PubMed ID: 23122490 [TBL] [Abstract][Full Text] [Related]
20. Manipulator adaptive control by neural networks in an orange picking robot. Cavalieri S; Plebe A Int J Neural Syst; 1996 Dec; 7(6):735-55. PubMed ID: 9113534 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]