These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 15485224)

  • 1. Multiscale quantum propagation using compact-support wavelets in space and time.
    Wang H; Acevedo R; Mollé H; Mackey JL; Kinsey JL; Johnson BR
    J Chem Phys; 2004 Oct; 121(16):7647-57. PubMed ID: 15485224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional quantum propagation using wavelets in space and time.
    Sparks DK; Johnson BR
    J Chem Phys; 2006 Sep; 125(11):114104. PubMed ID: 16999463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum and electromagnetic propagation with the conjugate symmetric Lanczos method.
    Acevedo R; Lombardini R; Turner MA; Kinsey JL; Johnson BR
    J Chem Phys; 2008 Feb; 128(6):064103. PubMed ID: 18282024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum dynamics calculations using symmetrized, orthogonal Weyl-Heisenberg wavelets with a phase space truncation scheme. II. Construction and optimization.
    Poirier B; Salam A
    J Chem Phys; 2004 Jul; 121(4):1690-703. PubMed ID: 15260720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimode wavelet basis calculations via the molecular self-consistent-field plus configuration-interaction method.
    Griffin CD; Acevedo R; Massey DW; Kinsey JL; Johnson BR
    J Chem Phys; 2006 Apr; 124(13):134105. PubMed ID: 16613447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex trajectories sans isochrones: quantum barrier scattering with rectilinear constant velocity trajectories.
    Rowland BA; Wyatt RE
    J Chem Phys; 2007 Oct; 127(16):164104. PubMed ID: 17979316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum dynamics calculations using symmetrized, orthogonal Weyl-Heisenberg wavelets with a phase space truncation scheme. III. Representations and calculations.
    Poirier B; Salam A
    J Chem Phys; 2004 Jul; 121(4):1704-24. PubMed ID: 15260721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral difference Lanczos method for efficient time propagation in quantum control theory.
    Farnum JD; Mazziotti DA
    J Chem Phys; 2004 Apr; 120(13):5962-7. PubMed ID: 15267477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A wavelet-based method for multiscale tomographic reconstruction.
    Bhatia M; Karl WC; Willsky AS
    IEEE Trans Med Imaging; 1996; 15(1):92-101. PubMed ID: 18215892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using preconditioned adaptive step size Runge-Kutta methods for solving the time-dependent Schrödinger equation.
    Tremblay JC; Carrington T
    J Chem Phys; 2004 Dec; 121(23):11535-41. PubMed ID: 15634118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite basis representations with nondirect product basis functions having structure similar to that of spherical harmonics.
    Czakó G; Szalay V; Császár AG
    J Chem Phys; 2006 Jan; 124(1):14110. PubMed ID: 16409027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multidimensional quantum trajectories: applications of the derivative propagation method.
    Trahan CJ; Wyatt RE; Poirier B
    J Chem Phys; 2005 Apr; 122(16):164104. PubMed ID: 15945669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trajectory approach to dissipative quantum phase space dynamics: Application to barrier scattering.
    Hughes KH; Wyatt RE
    J Chem Phys; 2004 Mar; 120(9):4089-97. PubMed ID: 15268575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum trajectories in complex phase space: multidimensional barrier transmission.
    Wyatt RE; Rowland BA
    J Chem Phys; 2007 Jul; 127(4):044103. PubMed ID: 17672677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavelet treatment of structure and thermodynamics of simple liquids.
    Chuev GN; Fedorov MV
    J Chem Phys; 2004 Jan; 120(3):1191-6. PubMed ID: 15268242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of barrier scattering with real and complex quantum trajectories.
    Rowland BA; Wyatt RE
    J Phys Chem A; 2007 Oct; 111(41):10234-50. PubMed ID: 17645320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full S matrix calculation via a single real-symmetric Lanczos recursion: the Lanczos artificial boundary inhomogeneity method.
    Zhang H; Smith SC
    J Chem Phys; 2004 Jan; 120(3):1161-3. PubMed ID: 15268237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A restricted quantum reaction path Hamiltonian: theory, discrete variable representation propagation algorithm, and applications.
    González J; Giménez X; Bofill JM
    J Chem Phys; 2009 Aug; 131(5):054108. PubMed ID: 19673552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An analysis of the accuracy of an initial value representation surface hopping wave function in the interaction and asymptotic regions.
    Sergeev A; Herman MF
    J Chem Phys; 2006 Jul; 125(2):24107. PubMed ID: 16848577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum trajectories in complex space: one-dimensional stationary scattering problems.
    Chou CC; Wyatt RE
    J Chem Phys; 2008 Apr; 128(15):154106. PubMed ID: 18433189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.