BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15485485)

  • 1. Functional importance of the C-terminus of the human norepinephrine transporter.
    Distelmaier F; Wiedemann P; Brüss M; Bönisch H
    J Neurochem; 2004 Nov; 91(3):537-46. PubMed ID: 15485485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acids involved in differences in the pharmacological profiles of the rat and human noradrenaline transporters.
    Paczkowski FA; Bryan-Lluka LJ
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Apr; 365(4):312-7. PubMed ID: 11919656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C-terminal region regulates the functional expression of human noradrenaline transporter splice variants.
    Sogawa C; Kumagai K; Sogawa N; Morita K; Dohi T; Kitayama S
    Biochem J; 2007 Jan; 401(1):185-95. PubMed ID: 16965261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological properties of the naturally occurring Ala(457)Pro variant of the human norepinephrine transporter.
    Paczkowski FA; Bönisch H; Bryan-Lluka LJ
    Pharmacogenetics; 2002 Mar; 12(2):165-73. PubMed ID: 11875370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional characterization of the splicing variants of human norepinephrine transporter.
    Kitayama S; Morita K; Dohi T
    Neurosci Lett; 2001 Oct; 312(2):108-12. PubMed ID: 11595346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of transmembrane domain 2 and the first intracellular loop in human noradrenaline transporter function: pharmacological and SCAM analysis.
    Sucic S; Bryan-Lluka LJ
    J Neurochem; 2005 Sep; 94(6):1620-30. PubMed ID: 16092934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The N-terminus of the norepinephrine transporter regulates the magnitude and selectivity of the transporter-associated leak current.
    Binda F; Lute BJ; Dipace C; Blakely RD; Galli A
    Neuropharmacology; 2006 Mar; 50(3):354-61. PubMed ID: 16289633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inability to N-glycosylate the human norepinephrine transporter reduces protein stability, surface trafficking, and transport activity but not ligand recognition.
    Melikian HE; Ramamoorthy S; Tate CG; Blakely RD
    Mol Pharmacol; 1996 Aug; 50(2):266-76. PubMed ID: 8700133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants within the C-terminus of the human norepinephrine transporter dictate transporter trafficking, stability, and activity.
    Bauman PA; Blakely RD
    Arch Biochem Biophys; 2002 Aug; 404(1):80-91. PubMed ID: 12127072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute regulation of norepinephrine transport: II. PKC-modulated surface expression of human norepinephrine transporter proteins.
    Apparsundaram S; Schroeter S; Giovanetti E; Blakely RD
    J Pharmacol Exp Ther; 1998 Nov; 287(2):744-51. PubMed ID: 9808705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological profile of radioligand binding to the norepinephrine transporter: instances of poor indication of functional activity.
    Reith ME; Wang LC; Dutta AK
    J Neurosci Methods; 2005 Apr; 143(1):87-94. PubMed ID: 15763140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the functional roles of the MELAL and GQXXRXG motifs of the human noradrenaline transporter using cysteine mutants.
    Sucic S; Bryan-Lluka LJ
    Eur J Pharmacol; 2007 Feb; 556(1-3):27-35. PubMed ID: 17141753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine residue 271 of the norepinephrine transporter is an important determinant of its pharmacology.
    Paczkowski FA; Bryan-Lluka LJ
    Brain Res Mol Brain Res; 2001 Dec; 97(1):32-42. PubMed ID: 11744160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Norepinephrine transporter immunoblotting and radioligand binding in cocaine abusers.
    Mash DC; Ouyang Q; Qin Y; Pablo J
    J Neurosci Methods; 2005 Apr; 143(1):79-85. PubMed ID: 15763139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of transport function and desipramine binding at the human noradrenaline transporter by N-ethylmaleimide and protection by substrate analogs.
    Foley KF; Cozzi NV
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Jun; 365(6):457-61. PubMed ID: 12070759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amphetamine induces a calcium/calmodulin-dependent protein kinase II-dependent reduction in norepinephrine transporter surface expression linked to changes in syntaxin 1A/transporter complexes.
    Dipace C; Sung U; Binda F; Blakely RD; Galli A
    Mol Pharmacol; 2007 Jan; 71(1):230-9. PubMed ID: 17032905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional significance of a highly conserved glutamate residue of the human noradrenaline transporter.
    Sucic S; Paczkowski FA; Runkel F; Bönisch H; Bryan-Lluka LJ
    J Neurochem; 2002 Apr; 81(2):344-54. PubMed ID: 12064482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mutation in the human norepinephrine transporter gene (SLC6A2) associated with orthostatic intolerance disrupts surface expression of mutant and wild-type transporters.
    Hahn MK; Robertson D; Blakely RD
    J Neurosci; 2003 Jun; 23(11):4470-8. PubMed ID: 12805287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological properties of naturally occurring variants of the human norepinephrine transporter.
    Runkel F; Brüss M; Nöthen MM; Stöber G; Propping P; Bönisch H
    Pharmacogenetics; 2000 Jul; 10(5):397-405. PubMed ID: 10898109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of proline residues in the expression and function of the human noradrenaline transporter.
    Paczkowski FA; Bryan-Lluka LJ
    J Neurochem; 2004 Jan; 88(1):203-11. PubMed ID: 14675164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.