BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15485667)

  • 1. Steric effects of isoleucine 107 on heme reorientation reaction in human myoglobin.
    Ishikawa H; Takahashi S; Ishimori K; Morishima I
    Biochem Biophys Res Commun; 2004 Nov; 324(3):1095-100. PubMed ID: 15485667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand migration in human myoglobin: steric effects of isoleucine 107(G8) on O(2) and CO binding.
    Ishikawa H; Uchida T; Takahashi S; Ishimori K; Morishima I
    Biophys J; 2001 Mar; 80(3):1507-17. PubMed ID: 11222311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of altered protein-heme interactions on the resonance Raman spectra of heme proteins. Studies of heme rotational disorder.
    Rwere F; Mak PJ; Kincaid JR
    Biopolymers; 2008 Mar; 89(3):179-86. PubMed ID: 18008322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of 6,7-dicarboxyheme-substituted myoglobin.
    Neya S; Funasaki N; Igarashi N; Ikezaki A; Sato T; Imai K; Tanaka N
    Biochemistry; 1998 Apr; 37(16):5487-93. PubMed ID: 9548931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional roles of heme binding module in globin proteins: identification of the segment regulating the heme binding structure.
    Inaba K; Ishimori K; Morishima I
    J Mol Biol; 1998; 283(1):311-27. PubMed ID: 9761693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional evaluation of heme vinyl groups in myoglobin with symmetric protoheme isomers.
    Mie Y; Yamada C; Hareau GP; Neya S; Uno T; Funasaki N; Nishiyama K; Taniguchi I
    Biochemistry; 2004 Oct; 43(41):13149-55. PubMed ID: 15476408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the intramolecular disulfide bond on ligand binding dynamics in myoglobin.
    Uchida T; Unno M; Ishimori K; Morishima I
    Biochemistry; 1997 Jan; 36(2):324-32. PubMed ID: 9003184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a five-coordinate heme protein maquette: a spectroscopic model of deoxymyoglobin.
    Zhuang J; Amoroso JH; Kinloch R; Dawson JH; Baldwin MJ; Gibney BR
    Inorg Chem; 2004 Dec; 43(26):8218-20. PubMed ID: 15606161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum chemical evaluation of protein control over heme ligation: CO/O2 discrimination in myoglobin.
    De Angelis F; Jarzecki AA; Car R; Spiro TG
    J Phys Chem B; 2005 Feb; 109(7):3065-70. PubMed ID: 16851321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution NMR determination of the seating(s) of meso-nitro-etioheme-1 in myoglobin: implications for steric constraints to meso position access in heme degradation by coupled oxidation.
    Wang J; Li Y; Ma D; Kalish H; Balch AL; La Mar GN
    J Am Chem Soc; 2001 Aug; 123(33):8080-8. PubMed ID: 11506564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unfolding of apomyoglobin examined by synchrotron footprinting.
    Chance MR
    Biochem Biophys Res Commun; 2001 Sep; 287(3):614-21. PubMed ID: 11563839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Picosecond structural dynamics of myoglobin following photodissociation of carbon monoxide as revealed by ultraviolet time-resolved resonance Raman spectroscopy.
    Sato A; Mizutani Y
    Biochemistry; 2005 Nov; 44(45):14709-14. PubMed ID: 16274218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of heme types in heme-copper oxidases: effects of replacing a heme b with a heme o mimic in an engineered heme-copper center in myoglobin.
    Wang N; Zhao X; Lu Y
    J Am Chem Soc; 2005 Nov; 127(47):16541-7. PubMed ID: 16305243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobic distal pocket affects NO-heme geminate recombination dynamics in dehaloperoxidase and H64V myoglobin.
    Franzen S; Jasaitis A; Belyea J; Brewer SH; Casey R; MacFarlane AW; Stanley RJ; Vos MH; Martin JL
    J Phys Chem B; 2006 Jul; 110(29):14483-93. PubMed ID: 16854160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and ligand binding properties of myoglobins reconstituted with monodepropionated heme: functional role of each heme propionate side chain.
    Harada K; Makino M; Sugimoto H; Hirota S; Matsuo T; Shiro Y; Hisaeda Y; Hayashi T
    Biochemistry; 2007 Aug; 46(33):9406-16. PubMed ID: 17636874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural characterization of the proximal and distal histidine environment of cytoglobin and neuroglobin.
    Sawai H; Makino M; Mizutani Y; Ohta T; Sugimoto H; Uno T; Kawada N; Yoshizato K; Kitagawa T; Shiro Y
    Biochemistry; 2005 Oct; 44(40):13257-65. PubMed ID: 16201751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correct interpretation of heme protein spectra allows distinguishing between the heme and the protein dynamics.
    Stavrov SS
    Biopolymers; 2004 May-Jun 5; 74(1-2):37-40. PubMed ID: 15137090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton NMR study of myoglobin reconstituted with 3, 7-diethyl-2, 8-dimethyl iron porphyrin: remarkable influence of peripheral substitution on heme rotation.
    Juillard S; Bondon A; Simonneaux G
    J Inorg Biochem; 2006 Sep; 100(9):1441-8. PubMed ID: 16766034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic analysis of efficient heme rotation in myoglobin by NMR spectroscopy.
    Neya S; Funasaki N; Nakamura M
    Biochim Biophys Acta; 1992 Oct; 1117(3):243-50. PubMed ID: 1329969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variable-temperature study of the heme-reorientation process in equine myoglobin.
    Yee S; Peyton DH
    Biochim Biophys Acta; 1995 Oct; 1252(2):295-9. PubMed ID: 7578236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.