These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 15486454)

  • 1. Asymmetric synthesis and reactivity of potent sialyltransferase inhibitors based on transition-state analogues: supplementary data.
    Skropeta D; Schwörer R; Haag T; Schmidt RR
    Glycoconj J; 2004; 21(5):221-5. PubMed ID: 15486454
    [No Abstract]   [Full Text] [Related]  

  • 2. Potential sialyltransferase inhibitors based on neuraminyl substitution by hetaryl rings.
    Mathew B; Schmidt RR
    Carbohydr Res; 2007 Feb; 342(3-4):558-66. PubMed ID: 16989791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithocholic acid analogues, new and potent alpha-2,3-sialyltransferase inhibitors.
    Chang KH; Lee L; Chen J; Li WS
    Chem Commun (Camb); 2006 Feb; (6):629-31. PubMed ID: 16446832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric synthesis and affinity of potent sialyltransferase inhibitors based on transition-state analogues.
    Skropeta D; Schwörer R; Haag T; Schmidt RR
    Glycoconj J; 2004; 21(5):205-19. PubMed ID: 15486453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 9-Deazaguanine derivatives: synthesis and inhibitory properties as multi-substrate analogue inhibitors of mammalian PNPs.
    Yatsu T; Hashimoto M; Hikishima S; Magnowska L; Bzowska A; Yokomatsu T
    Nucleic Acids Symp Ser (Oxf); 2008; (52):661-2. PubMed ID: 18776553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and evaluation of 9-deazaguanine derivatives as multi-substrate analogue inhibitors of PNP.
    Hashimoto M; Hikishima S; Magnowska L; Bzowska A; Yokomatsu T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):431-2. PubMed ID: 18029771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitors of phenylalanine ammonia-lyase: substituted derivatives of 2-aminoindane-2-phosphonic acid and 1-aminobenzylphosphonic acid.
    Miziak P; Zoń J; Amrhein N; Gancarz R
    Phytochemistry; 2007 Feb; 68(4):407-15. PubMed ID: 17215011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guanine, pyrazolo[3,4-d]pyrimidine, and triazolo[4,5-d]pyrimidine (8-azaguanine) phosphonate acyclic derivatives as inhibitors of purine nucleoside phosphorylase.
    Beauchamp LM; Tuttle JV; Rodriguez ME; Sznaidman ML
    J Med Chem; 1996 Feb; 39(4):949-56. PubMed ID: 8632418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent development in the design of sialyltransferase inhibitors.
    Wang X; Zhang LH; Ye XS
    Med Res Rev; 2003 Jan; 23(1):32-47. PubMed ID: 12424752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The most potent organophosphorus inhibitors of leucine aminopeptidase. Structure-based design, chemistry, and activity.
    Grembecka J; Mucha A; Cierpicki T; Kafarski P
    J Med Chem; 2003 Jun; 46(13):2641-55. PubMed ID: 12801228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of bisubstrate and donor analogues of sialyltransferase and their inhibitory activities.
    Izumi M; Wada K; Yuasa H; Hashimoto H
    J Org Chem; 2005 Oct; 70(22):8817-24. PubMed ID: 16238314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic syntheses and inhibitory activities of bisubstrate-type inhibitors of sialyltransferases.
    Hinou H; Sun XL; Ito Y
    J Org Chem; 2003 Jul; 68(14):5602-13. PubMed ID: 12839452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphonic acid-containing analogues of mycophenolic acid as inhibitors of IMPDH.
    Watkins WJ; Chen JM; Cho A; Chong L; Collins N; Fardis M; Huang W; Hung M; Kirschberg T; Lee WA; Liu X; Thomas W; Xu J; Zeynalzadegan A; Zhang J
    Bioorg Med Chem Lett; 2006 Jul; 16(13):3479-83. PubMed ID: 16621550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition State-Based Sialyltransferase Inhibitors: Mimicking Oxocarbenium Ion by Simple Amide.
    Guo J; Li W; Xue W; Ye XS
    J Med Chem; 2017 Mar; 60(5):2135-2141. PubMed ID: 28165727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, SAR, and X-ray structure of tricyclic compounds as potent FBPase inhibitors.
    Tsukada T; Takahashi M; Takemoto T; Kanno O; Yamane T; Kawamura S; Nishi T
    Bioorg Med Chem Lett; 2009 Oct; 19(20):5909-12. PubMed ID: 19762234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient synthesis of 2'-deoxynucleoside 3'-C-phosphonates: reactivity of geminal hydroxyphosphonate moiety.
    Králíková S; Budĕsínský M; Masojidková M; Rosenberg I
    Nucleosides Nucleotides Nucleic Acids; 2000 Jul; 19(7):1159-83. PubMed ID: 10999255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and evaluation of phosphoramidate amino acid-based inhibitors of sialyltransferases.
    Whalen LJ; McEvoy KA; Halcomb RL
    Bioorg Med Chem Lett; 2003 Jan; 13(2):301-4. PubMed ID: 12482445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorinated phosphonates: synthesis and biomedical application.
    Romanenko VD; Kukhar VP
    Chem Rev; 2006 Sep; 106(9):3868-935. PubMed ID: 16967924
    [No Abstract]   [Full Text] [Related]  

  • 19. Synthesis of tamiflu and its phosphonate congeners possessing potent anti-influenza activity.
    Shie JJ; Fang JM; Wang SY; Tsai KC; Cheng YS; Yang AS; Hsiao SC; Su CY; Wong CH
    J Am Chem Soc; 2007 Oct; 129(39):11892-3. PubMed ID: 17850083
    [No Abstract]   [Full Text] [Related]  

  • 20. Farnesyl-derived inhibitors of ras farnesyl transferase.
    Kang MS; Stemerick DM; Zwolshen JH; Harry BS; Sunkara PS; Harrison BL
    Biochem Biophys Res Commun; 1995 Dec; 217(1):245-9. PubMed ID: 8526918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.