BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 15486692)

  • 1. Gene conversion and functional divergence in the beta-globin gene family.
    Aguileta G; Bielawski JP; Yang Z
    J Mol Evol; 2004 Aug; 59(2):177-89. PubMed ID: 15486692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary rate variation among vertebrate beta globin genes: implications for dating gene family duplication events.
    Aguileta G; Bielawski JP; Yang Z
    Gene; 2006 Sep; 380(1):21-9. PubMed ID: 16843621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A maximum likelihood method for detecting functional divergence at individual codon sites, with application to gene family evolution.
    Bielawski JP; Yang Z
    J Mol Evol; 2004 Jul; 59(1):121-32. PubMed ID: 15383915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The alpha-globin gene family of an Australian marsupial, Macropus eugenii: the long evolutionary history of the theta-globin gene and its functional status in mammals.
    Cooper SJ; Wheeler D; Hope RM; Dolman G; Saint KM; Gooley AA; Holland RA
    J Mol Evol; 2005 May; 60(5):653-64. PubMed ID: 15983873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinctive patterns of evolution of the δ-globin gene (HBD) in primates.
    Moleirinho A; Lopes AM; Seixas S; Morales-Hojas R; Prata MJ; Amorim A
    PLoS One; 2015; 10(4):e0123365. PubMed ID: 25853817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ancient Duplications and Expression Divergence in the Globin Gene Superfamily of Vertebrates: Insights from the Elephant Shark Genome and Transcriptome.
    Opazo JC; Lee AP; Hoffmann FG; Toloza-Villalobos J; Burmester T; Venkatesh B; Storz JF
    Mol Biol Evol; 2015 Jul; 32(7):1684-94. PubMed ID: 25743544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The alphaD-globin gene originated via duplication of an embryonic alpha-like globin gene in the ancestor of tetrapod vertebrates.
    Hoffmann FG; Storz JF
    Mol Biol Evol; 2007 Sep; 24(9):1982-90. PubMed ID: 17586601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lineage-specific patterns of functional diversification in the alpha- and beta-globin gene families of tetrapod vertebrates.
    Hoffmann FG; Storz JF; Gorr TA; Opazo JC
    Mol Biol Evol; 2010 May; 27(5):1126-38. PubMed ID: 20047955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary dynamics and functional specialization of plant paralogs formed by whole and small-scale genome duplications.
    Carretero-Paulet L; Fares MA
    Mol Biol Evol; 2012 Nov; 29(11):3541-51. PubMed ID: 22734049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian estimation of positively selected sites.
    Huelsenbeck JP; Dyer KA
    J Mol Evol; 2004 Jun; 58(6):661-72. PubMed ID: 15461423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linkage of the beta-like omega-globin gene to alpha-like globin genes in an Australian marsupial supports the chromosome duplication model for separation of globin gene clusters.
    Wheeler D; Hope RM; Cooper SJ; Gooley AA; Holland RA
    J Mol Evol; 2004 Jun; 58(6):642-52. PubMed ID: 15461421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages.
    Yang Z; Nielsen R
    Mol Biol Evol; 2002 Jun; 19(6):908-17. PubMed ID: 12032247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Likelihood analysis of the chalcone synthase genes suggests the role of positive selection in morning glories (Ipomoea).
    Yang J; Gu H; Yang Z
    J Mol Evol; 2004 Jan; 58(1):54-63. PubMed ID: 14743314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential loss and retention of cytoglobin, myoglobin, and globin-E during the radiation of vertebrates.
    Hoffmann FG; Opazo JC; Storz JF
    Genome Biol Evol; 2011; 3():588-600. PubMed ID: 21697098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive functional divergence among triplicated alpha-globin genes in rodents.
    Storz JF; Hoffmann FG; Opazo JC; Moriyama H
    Genetics; 2008 Mar; 178(3):1623-38. PubMed ID: 18245844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Caenorhabditis globin gene family reveals extensive nematode-specific radiation and diversification.
    Hoogewijs D; De Henau S; Dewilde S; Moens L; Couvreur M; Borgonie G; Vinogradov SN; Roy SW; Vanfleteren JR
    BMC Evol Biol; 2008 Oct; 8():279. PubMed ID: 18844991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene duplication, genome duplication, and the functional diversification of vertebrate globins.
    Storz JF; Opazo JC; Hoffmann FG
    Mol Phylogenet Evol; 2013 Feb; 66(2):469-78. PubMed ID: 22846683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene Turnover and Diversification of the α- and β-Globin Gene Families in Sauropsid Vertebrates.
    Hoffmann FG; Vandewege MW; Storz JF; Opazo JC
    Genome Biol Evol; 2018 Jan; 10(1):344-358. PubMed ID: 29340581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conservation of globin genes in the "living fossil" Latimeria chalumnae and reconstruction of the evolution of the vertebrate globin family.
    Schwarze K; Burmester T
    Biochim Biophys Acta; 2013 Sep; 1834(9):1801-12. PubMed ID: 23360762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive divergence of ancient gene duplicates in the avian MHC class II beta.
    Burri R; Salamin N; Studer RA; Roulin A; Fumagalli L
    Mol Biol Evol; 2010 Oct; 27(10):2360-74. PubMed ID: 20463048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.