BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 15486943)

  • 1. Runx2/Cbfa1-genetically engineered skeletal myoblasts mineralize collagen scaffolds in vitro.
    Gersbach CA; Byers BA; Pavlath GK; Guldberg RE; García AJ
    Biotechnol Bioeng; 2004 Nov; 88(3):369-78. PubMed ID: 15486943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergy between genetic and tissue engineering: Runx2 overexpression and in vitro construct development enhance in vivo mineralization.
    Byers BA; Guldberg RE; García AJ
    Tissue Eng; 2004; 10(11-12):1757-66. PubMed ID: 15684684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exogenous Runx2 expression enhances in vitro osteoblastic differentiation and mineralization in primary bone marrow stromal cells.
    Byers BA; García AJ
    Tissue Eng; 2004; 10(11-12):1623-32. PubMed ID: 15684671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dermal fibroblasts genetically modified to express Runx2/Cbfa1 as a mineralizing cell source for bone tissue engineering.
    Phillips JE; Guldberg RE; García AJ
    Tissue Eng; 2007 Aug; 13(8):2029-40. PubMed ID: 17516856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mineralization capacity of Runx2/Cbfa1-genetically engineered fibroblasts is scaffold dependent.
    Phillips JE; Hutmacher DW; Guldberg RE; García AJ
    Biomaterials; 2006 Nov; 27(32):5535-45. PubMed ID: 16857257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro and in vivo osteoblastic differentiation of BMP-2- and Runx2-engineered skeletal myoblasts.
    Gersbach CA; Guldberg RE; García AJ
    J Cell Biochem; 2007 Apr; 100(5):1324-36. PubMed ID: 17131362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Runx2 genetic engineering and in vitro maturation of tissue-engineered constructs on the repair of critical size bone defects.
    Byers BA; Guldberg RE; Hutmacher DW; García AJ
    J Biomed Mater Res A; 2006 Mar; 76(3):646-55. PubMed ID: 16287095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose--derived stem cells in vitro and in vivo.
    Zhang X; Yang M; Lin L; Chen P; Ma KT; Zhou CY; Ao YF
    Calcif Tissue Int; 2006 Sep; 79(3):169-78. PubMed ID: 16969589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retroviral-mediated gene therapy for the differentiation of primary cells into a mineralizing osteoblastic phenotype.
    Phillips JE; García AJ
    Methods Mol Biol; 2008; 433():333-54. PubMed ID: 18679633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Runx2/Cbfa1 stimulates transdifferentiation of primary skeletal myoblasts into a mineralizing osteoblastic phenotype.
    Gersbach CA; Byers BA; Pavlath GK; García AJ
    Exp Cell Res; 2004 Nov; 300(2):406-17. PubMed ID: 15475005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiation of osteoblasts from murine embryonic stem cells by overexpression of the transcriptional factor osterix.
    Tai G; Polak JM; Bishop AE; Christodoulou I; Buttery LD
    Tissue Eng; 2004; 10(9-10):1456-66. PubMed ID: 15588405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-type-dependent up-regulation of in vitro mineralization after overexpression of the osteoblast-specific transcription factor Runx2/Cbfal.
    Byers BA; Pavlath GK; Murphy TJ; Karsenty G; García AJ
    J Bone Miner Res; 2002 Nov; 17(11):1931-44. PubMed ID: 12412799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inducible regulation of Runx2-stimulated osteogenesis.
    Gersbach CA; Le Doux JM; Guldberg RE; García AJ
    Gene Ther; 2006 Jun; 13(11):873-82. PubMed ID: 16496016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering.
    Chen G; Dong C; Yang L; Lv Y
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of potential modifiers of Runx2/Cbfa1 activity in C2C12 cells in response to bone morphogenetic protein-7.
    Gu K; Zhang L; Jin T; Rutherford RB
    Cells Tissues Organs; 2004; 176(1-3):28-40. PubMed ID: 14745233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells.
    Datta N; Holtorf HL; Sikavitsas VI; Jansen JA; Mikos AG
    Biomaterials; 2005 Mar; 26(9):971-7. PubMed ID: 15369685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adipose derived mesenchymal stem cells - their osteogenicity and osteoblast in vitro mineralization on titanium granule carriers.
    Dahl M; Syberg S; Jørgensen NR; Pinholt EM
    J Craniomaxillofac Surg; 2013 Dec; 41(8):e213-20. PubMed ID: 23388497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leporine-derived adipose precursor cells exhibit in vitro osteogenic potential.
    Dudas JR; Losee JE; Penascino VM; Smith DM; Cooper GM; Mooney MP; Jiang S; Rubin JP; Marra KG
    J Craniofac Surg; 2008 Mar; 19(2):360-8. PubMed ID: 18362712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.