BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

501 related articles for article (PubMed ID: 15486944)

  • 1. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds.
    Meinel L; Hofmann S; Karageorgiou V; Zichner L; Langer R; Kaplan D; Vunjak-Novakovic G
    Biotechnol Bioeng; 2004 Nov; 88(3):379-91. PubMed ID: 15486944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds.
    Meinel L; Karageorgiou V; Hofmann S; Fajardo R; Snyder B; Li C; Zichner L; Langer R; Vunjak-Novakovic G; Kaplan DL
    J Biomed Mater Res A; 2004 Oct; 71(1):25-34. PubMed ID: 15316936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells.
    Wang Y; Kim UJ; Blasioli DJ; Kim HJ; Kaplan DL
    Biomaterials; 2005 Dec; 26(34):7082-94. PubMed ID: 15985292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary study of mesenchymal stem cells-seeded type I collagen-glycosaminoglycan matrices for cartilage repair.
    Xiang Z; Hu W; Kong Q; Zhou H; Zhang X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2006 Feb; 20(2):148-54. PubMed ID: 16529325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells.
    Uebersax L; Merkle HP; Meinel L
    J Control Release; 2008 Apr; 127(1):12-21. PubMed ID: 18280603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes.
    Wang Y; Blasioli DJ; Kim HJ; Kim HS; Kaplan DL
    Biomaterials; 2006 Sep; 27(25):4434-42. PubMed ID: 16677707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells.
    Kim HJ; Kim UJ; Vunjak-Novakovic G; Min BH; Kaplan DL
    Biomaterials; 2005 Jul; 26(21):4442-52. PubMed ID: 15701373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioreactor cultivation of osteochondral grafts.
    Vunjak-Novakovic G; Meinel L; Altman G; Kaplan D
    Orthod Craniofac Res; 2005 Aug; 8(3):209-18. PubMed ID: 16022723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-linking affects cellular condensation and chondrogenesis in type II collagen-GAG scaffolds seeded with bone marrow-derived mesenchymal stem cells.
    Vickers SM; Gotterbarm T; Spector M
    J Orthop Res; 2010 Sep; 28(9):1184-92. PubMed ID: 20225321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun silk-BMP-2 scaffolds for bone tissue engineering.
    Li C; Vepari C; Jin HJ; Kim HJ; Kaplan DL
    Biomaterials; 2006 Jun; 27(16):3115-24. PubMed ID: 16458961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends.
    Bhardwaj N; Kundu SC
    Biomaterials; 2012 Apr; 33(10):2848-57. PubMed ID: 22261099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering.
    Yoo HS; Lee EA; Yoon JJ; Park TG
    Biomaterials; 2005 May; 26(14):1925-33. PubMed ID: 15576166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechano-functional assessment of human mesenchymal stem cells grown in three-dimensional hyaluronan-based scaffolds for cartilage tissue engineering.
    Stok KS; Lisignoli G; Cristino S; Facchini A; Müller R
    J Biomed Mater Res A; 2010 Apr; 93(1):37-45. PubMed ID: 19484767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behaviour of human mesenchymal stem cells on a polyelectrolyte-modified HEMA hydrogel for silk-based ligament tissue engineering.
    Bosetti M; Boccafoschi F; Calarco A; Leigheb M; Gatti S; Piffanelli V; Peluso G; Cannas M
    J Biomater Sci Polym Ed; 2008; 19(9):1111-23. PubMed ID: 18727855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis.
    Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T
    Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells.
    Jung Y; Kim SH; Kim YH; Kim SH
    Biomed Mater; 2009 Oct; 4(5):055009. PubMed ID: 19779251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds.
    Mygind T; Stiehler M; Baatrup A; Li H; Zou X; Flyvbjerg A; Kassem M; Bünger C
    Biomaterials; 2007 Feb; 28(6):1036-47. PubMed ID: 17081601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proliferation and differentiation of human mesenchymal stem cell encapsulated in polyelectrolyte complexation fibrous scaffold.
    Yim EK; Wan AC; Le Visage C; Liao IC; Leong KW
    Biomaterials; 2006 Dec; 27(36):6111-22. PubMed ID: 16919722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of three-dimensional expansion and cell seeding density on the cartilage-forming capacity of human articular chondrocytes in type II collagen sponges.
    Francioli SE; Candrian C; Martin K; Heberer M; Martin I; Barbero A
    J Biomed Mater Res A; 2010 Dec; 95(3):924-31. PubMed ID: 20845491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes.
    Mandal BB; Kundu SC
    Acta Biomater; 2009 Sep; 5(7):2579-90. PubMed ID: 19345621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.