These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 15488401)

  • 1. Visual search and memory search engage extensive overlapping cerebral cortices: an fMRI study.
    Makino Y; Yokosawa K; Takeda Y; Kumada T
    Neuroimage; 2004 Oct; 23(2):525-33. PubMed ID: 15488401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attention mechanisms in visual search -- an fMRI study.
    Leonards U; Sunaert S; Van Hecke P; Orban GA
    J Cogn Neurosci; 2000; 12 Suppl 2():61-75. PubMed ID: 11506648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The neural correlates of attention orienting in visuospatial working memory for detecting feature and conjunction changes.
    Yeh YY; Kuo BC; Liu HL
    Brain Res; 2007 Jan; 1130(1):146-57. PubMed ID: 17173876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic investigation of the functional neuroanatomy of auditory and visual phonological processing.
    Burton MW; Locasto PC; Krebs-Noble D; Gullapalli RP
    Neuroimage; 2005 Jul; 26(3):647-61. PubMed ID: 15955475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cognitive control network: Integrated cortical regions with dissociable functions.
    Cole MW; Schneider W
    Neuroimage; 2007 Aug; 37(1):343-60. PubMed ID: 17553704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An fMRI investigation of cortical contributions to spatial and nonspatial visual working memory.
    Postle BR; Stern CE; Rosen BR; Corkin S
    Neuroimage; 2000 May; 11(5 Pt 1):409-23. PubMed ID: 10806028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the neural basis of focused and divided attention.
    Nebel K; Wiese H; Stude P; de Greiff A; Diener HC; Keidel M
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):760-76. PubMed ID: 16337110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective attention modulates neural substrates of repetition priming and "implicit" visual memory: suppressions and enhancements revealed by FMRI.
    Vuilleumier P; Schwartz S; Duhoux S; Dolan RJ; Driver J
    J Cogn Neurosci; 2005 Aug; 17(8):1245-60. PubMed ID: 16197681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual attention deficits in Alzheimer's disease: an fMRI study.
    Hao J; Li K; Li K; Zhang D; Wang W; Yang Y; Yan B; Shan B; Zhou X
    Neurosci Lett; 2005 Sep; 385(1):18-23. PubMed ID: 15970381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attending to multiple visual streams: interactions between location-based and category-based attentional selection.
    Fagioli S; Macaluso E
    J Cogn Neurosci; 2009 Aug; 21(8):1628-41. PubMed ID: 18823252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues.
    Smith DT; Jackson SR; Rorden C
    Neuropsychologia; 2005; 43(9):1288-96. PubMed ID: 15949513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the human dorsolateral prefrontal cortex in ocular motor behavior.
    Pierrot-Deseilligny Ch; Müri RM; Nyffeler T; Milea D
    Ann N Y Acad Sci; 2005 Apr; 1039():239-51. PubMed ID: 15826978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R; Kaufmann C; Tucha O; Auer DP; Lange KW
    Brain Res; 2006 May; 1090(1):146-55. PubMed ID: 16643867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct neural correlates for resolving stroop conflict at inhibited and noninhibited locations in inhibition of return.
    Chen Q; Wei P; Zhou X
    J Cogn Neurosci; 2006 Nov; 18(11):1937-46. PubMed ID: 17069483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes.
    Ricciardi E; Bonino D; Gentili C; Sani L; Pietrini P; Vecchi T
    Neuroscience; 2006 Apr; 139(1):339-49. PubMed ID: 16324793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of precuneus and left inferior frontal cortex during source memory episodic retrieval.
    Lundstrom BN; Ingvar M; Petersson KM
    Neuroimage; 2005 Oct; 27(4):824-34. PubMed ID: 15982902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segregated neural representation of distinct emotion dimensions in the prefrontal cortex-an fMRI study.
    Grimm S; Schmidt CF; Bermpohl F; Heinzel A; Dahlem Y; Wyss M; Hell D; Boesiger P; Boeker H; Northoff G
    Neuroimage; 2006 Mar; 30(1):325-40. PubMed ID: 16230029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical activation during memory-guided saccades.
    Ozyurt J; Rutschmann RM; Greenlee MW
    Neuroreport; 2006 Jul; 17(10):1005-9. PubMed ID: 16791093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective connectivity in target stimulus processing: a dynamic causal modeling study of visual oddball task.
    Brázdil M; Mikl M; Marecek R; Krupa P; Rektor I
    Neuroimage; 2007 Apr; 35(2):827-35. PubMed ID: 17258910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Category-specific organization of prefrontal response-facilitation during priming.
    Bunzeck N; Schütze H; Düzel E
    Neuropsychologia; 2006; 44(10):1765-76. PubMed ID: 16701731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.