BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 154888)

  • 21. Kinetic studies of beef heart mitochondrial adenosine triphosphatase: interaction of the inhibitor protein and adenosine triphosphate analogues.
    Krull KW; Schuster SM
    Biochemistry; 1981 Mar; 20(6):1592-8. PubMed ID: 6452898
    [No Abstract]   [Full Text] [Related]  

  • 22. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state.
    Fak JJ; Itkin A; Ciobanu DD; Lin EC; Song XJ; Chou YT; Gierasch LM; Hunt JF
    Biochemistry; 2004 Jun; 43(23):7307-27. PubMed ID: 15182175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of bound potassium ions in the hydrolysis of low concentrations of adenosine triphosphate by preparations of membrane fragments from ox brain cerebral cortex.
    Goldfarb PS; Rodnight R
    Biochem J; 1970 Nov; 120(1):15-24. PubMed ID: 4250237
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of inhibitors on mitochondrial adenosine triphosphatase of Tetrahymena pyriformis ST.
    Unitt MD; Lloyd D
    J Gen Microbiol; 1981 Oct; 126(2):261-6. PubMed ID: 6461727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pre-steady-state kinetics of beef heart mitochondrial ATPase.
    Clark DD; Daggett SG; Schuster SM
    Arch Biochem Biophys; 1984 Sep; 233(2):378-92. PubMed ID: 6237608
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic properties of a magnesium ion- and calcium ion-stimulated adenosine triphosphatase from the outer-membrane fraction of rat spleen mitochondria.
    Vijayakumar EK; Weidemann MJ
    Biochem J; 1977 Aug; 165(2):355-65. PubMed ID: 21656
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Factors affecting the species-homologous and species-heterologous binding of mitochondrial ATPase inhibitor, IF1, to the mitochondrial ATPase of slow and fast heart-rate hearts.
    Rouslin W; Broge CW
    Arch Biochem Biophys; 1993 Jun; 303(2):443-50. PubMed ID: 8512326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adenosine triphosphatase activity in the neural lobe of the bovine pituitary gland.
    Vilhardt H; Hope DB
    Biochem J; 1974 Oct; 143(1):181-90. PubMed ID: 4282706
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of the soluble adenosine triphosphatase from mitochondria by adenylyl imidodiphosphate.
    Philo RD; Selwyn MJ
    Biochem J; 1974 Dec; 143(3):745-9. PubMed ID: 4376952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protonic inhibition of the mitochondrial oligomycin-sensitive adenosine 5'-triphosphatase in ischemic and autolyzing cardiac muscle. Possible mechanism for the mitigation of ATP hydrolysis under nonenergizing conditions.
    Rouslin W
    J Biol Chem; 1983 Aug; 258(16):9657-61. PubMed ID: 6224783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction of Mg2+ with F0.F1 mitochondrial ATPase as related to its slow active/inactive transition.
    Bulygin VV; Vinogradov AD
    Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):149-56. PubMed ID: 1828147
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A kinetic study of the interaction between mitochondrial F1 adenosine triphosphatase and adenylyl imidodiphosphate and guanylyl imidodiphosphate.
    Belda FJ; Carmona FG; Cánovas FG; Gómez-Fernández JC; Lozano JA
    Biochem J; 1983 Mar; 210(3):727-35. PubMed ID: 6223627
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Kinetics of the interaction of ATPase of submitochondrial fragments and a natural protein-inhibitor].
    Panchenko MV; Vinogradov AD
    Biokhimiia; 1989 Apr; 54(4):569-79. PubMed ID: 2527066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Implications of the existence of two states of beef liver mitochondrial adenosine triphosphatase as revealed by kinetic studies.
    Wakagi T; Ohta T
    J Biochem; 1981 Apr; 89(4):1205-13. PubMed ID: 6454683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural and functional differences in H+-ATPases with native and reconstituted inhibitor protein.
    Valdés AM; Dreyfus G
    Biochem Int; 1987 Aug; 15(2):459-66. PubMed ID: 2893614
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The characterization of myosin-product complexes and of product-release steps during the magnesium ion-dependent adenosine triphosphatase reaction.
    Bagshaw CR; Trentham DR
    Biochem J; 1974 Aug; 141(2):331-49. PubMed ID: 4281653
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reaction mechanism of the magnesium ion-dependent adenosine triphosphatase of frog muscle myosin and subfragment 1.
    Ferenczi MA; Homsher E; Simmons RM; Trentham DR
    Biochem J; 1978 Apr; 171(1):165-75. PubMed ID: 148277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple-step kinetic mechanism of DNA-independent ATP binding and hydrolysis by Escherichia coli replicative helicase DnaB protein: quantitative analysis using the rapid quench-flow method.
    Rajendran S; Jezewska MJ; Bujalowski W
    J Mol Biol; 2000 Nov; 303(5):773-95. PubMed ID: 11061975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Citreoviridin, a specific inhibitor of the mitochondiral adenosine triphosphatase.
    Linnett PE; Mitchell AD; Osselton MD; Mulheirn LJ; Beechey RB
    Biochem J; 1978 Mar; 170(3):503-10. PubMed ID: 148274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cold lability of membrane-bound F1-ATPase.
    Bruni A; Frigeri L; Bigon E
    Biochim Biophys Acta; 1977 Nov; 462(2):323-32. PubMed ID: 145242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.