These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1374 related articles for article (PubMed ID: 15489127)

  • 1. The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition.
    Nam K; Watanabe J; Ishihara K
    Eur J Pharm Sci; 2004 Nov; 23(3):261-70. PubMed ID: 15489127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of swelling and drug release behavior of spontaneously forming hydrogels composed of phospholipid polymers.
    Nam K; Watanabe J; Ishihara K
    Int J Pharm; 2004 May; 275(1-2):259-69. PubMed ID: 15081156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels.
    Kimura M; Takai M; Ishihara K
    J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneously forming hydrogel from water-soluble random- and block-type phospholipid polymers.
    Kimura M; Fukumoto K; Watanabe J; Takai M; Ishihara K
    Biomaterials; 2005 Dec; 26(34):6853-62. PubMed ID: 15978662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-modulated release of insulin entrapped in a spontaneously formed hydrogel system composed of two water-soluble phospholipid polymers.
    Nam KW; Watanabe J; Ishihara K
    J Biomater Sci Polym Ed; 2002; 13(11):1259-69. PubMed ID: 12518803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen-bonding-driven spontaneous gelation of water-soluble phospholipid polymers in aqueous medium.
    Kimura M; Fukumoto K; Watanabe J; Ishihara K
    J Biomater Sci Polym Ed; 2004; 15(5):631-44. PubMed ID: 15264664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The prevention of peritendinous adhesions by a phospholipid polymer hydrogel formed in situ by spontaneous intermolecular interactions.
    Ishiyama N; Moro T; Ishihara K; Ohe T; Miura T; Konno T; Ohyama T; Kimura M; Kyomoto M; Nakamura K; Kawaguchi H
    Biomaterials; 2010 May; 31(14):4009-16. PubMed ID: 20149434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(ethylene glycol) methacrylate/dimethacrylate hydrogels for controlled release of hydrophobic drugs.
    Diramio JA; Kisaalita WS; Majetich GF; Shimkus JM
    Biotechnol Prog; 2005; 21(4):1281-8. PubMed ID: 16080712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiation synthesis of multifunctional polymeric hydrogels for oral delivery of insulin.
    Abou Taleb MF
    Int J Biol Macromol; 2013 Nov; 62():341-7. PubMed ID: 24055698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Release characteristics of novel pH-sensitive p(HEMA-DMAEMA) hydrogels containing 3-(trimethoxy-silyl) propyl methacrylate.
    Brahim S; Narinesingh D; Guiseppi-Elie A
    Biomacromolecules; 2003; 4(5):1224-31. PubMed ID: 12959587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery.
    Kumar A; Lahiri SS; Singh H
    Int J Pharm; 2006 Oct; 323(1-2):117-24. PubMed ID: 16828246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid nanogels with physical and chemical cross-linking structures as nanocarriers.
    Morimoto N; Endo T; Ohtomi M; Iwasaki Y; Akiyoshi K
    Macromol Biosci; 2005 Aug; 5(8):710-6. PubMed ID: 16080166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-compatible and adhesive polyion complex hydrogels composed of amphiphilic phospholipid polymers.
    Kimura M; Takai M; Ishihara K
    J Biomater Sci Polym Ed; 2007; 18(5):623-40. PubMed ID: 17550663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs.
    Lin YH; Liang HF; Chung CK; Chen MC; Sung HW
    Biomaterials; 2005 May; 26(14):2105-13. PubMed ID: 15576185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of cross-linked collagen-phospholipid polymer hybrid gels.
    Nam K; Kimura T; Kishida A
    Biomaterials; 2007 Jan; 28(1):1-8. PubMed ID: 16959313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(MAA-co-AN) hydrogels with improved mechanical properties for theophylline controlled delivery.
    Luo Y; Zhang K; Wei Q; Liu Z; Chen Y
    Acta Biomater; 2009 Jan; 5(1):316-27. PubMed ID: 18723415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of acrylic type hydrogels containing azo derivatives of 5-amino salicylic acid for colon-specific drug delivery.
    Mahkam M; Doostie L; Siadat SO
    Inflammopharmacology; 2006 Mar; 14(1-2):72-5. PubMed ID: 16835716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug release behaviors of a pH sensitive semi-interpenetrating polymer network hydrogel composed of poly(vinyl alcohol) and star poly[2-(dimethylamino)ethyl methacrylate].
    Wu W; Liu J; Cao S; Tan H; Li J; Xu F; Zhang X
    Int J Pharm; 2011 Sep; 416(1):104-9. PubMed ID: 21704139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biological performance of cell-containing phospholipid polymer hydrogels in bulk and microscale form.
    Xu Y; Jang K; Konno T; Ishihara K; Mawatari K; Kitamori T
    Biomaterials; 2010 Dec; 31(34):8839-46. PubMed ID: 20732713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of binder additives on terbutaline hydrogels of alpha-PVA/NaCl/H(2)O system in drug delivery: I. Effect of gelatin and soluble starch.
    Shaheen SM; Takezoe K; Yamaura K
    Biomed Mater Eng; 2004; 14(4):371-82. PubMed ID: 15472386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 69.