These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 15489274)
1. Estimating genome conservation between crop and model legume species. Choi HK; Mun JH; Kim DJ; Zhu H; Baek JM; Mudge J; Roe B; Ellis N; Doyle J; Kiss GB; Young ND; Cook DR Proc Natl Acad Sci U S A; 2004 Oct; 101(43):15289-94. PubMed ID: 15489274 [TBL] [Abstract][Full Text] [Related]
2. Genome-enabled insights into legume biology. Young ND; Bharti AK Annu Rev Plant Biol; 2012; 63():283-305. PubMed ID: 22404476 [TBL] [Abstract][Full Text] [Related]
3. Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of genome structure with Lens culinaris. Ellwood SR; Phan HT; Jordan M; Hane J; Torres AM; Avila CM; Cruz-Izquierdo S; Oliver RP BMC Genomics; 2008 Aug; 9():380. PubMed ID: 18691425 [TBL] [Abstract][Full Text] [Related]
4. The model legume genomes. Cannon SB Methods Mol Biol; 2013; 1069():1-14. PubMed ID: 23996304 [TBL] [Abstract][Full Text] [Related]
5. Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes. Lin Y; Cheng Y; Jin J; Jin X; Jiang H; Yan H; Cheng B PLoS One; 2014; 9(7):e102825. PubMed ID: 25047803 [TBL] [Abstract][Full Text] [Related]
6. Evolution and microsynteny of the apyrase gene family in three legume genomes. Cannon SB; McCombie WR; Sato S; Tabata S; Denny R; Palmer L; Katari M; Young ND; Stacey G Mol Genet Genomics; 2003 Dec; 270(4):347-61. PubMed ID: 14598165 [TBL] [Abstract][Full Text] [Related]
7. Phylogeny and genomic organization of the TIR and non-tIR NBS-LRR resistance gene family in Medicago truncatula. Zhu H; Cannon SB; Young ND; Cook DR Mol Plant Microbe Interact; 2002 Jun; 15(6):529-39. PubMed ID: 12059101 [TBL] [Abstract][Full Text] [Related]
8. Bridging model and crop legumes through comparative genomics. Zhu H; Choi HK; Cook DR; Shoemaker RC Plant Physiol; 2005 Apr; 137(4):1189-96. PubMed ID: 15824281 [No Abstract] [Full Text] [Related]
9. Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families. Pfeil BE; Schlueter JA; Shoemaker RC; Doyle JJ Syst Biol; 2005 Jun; 54(3):441-54. PubMed ID: 16012110 [TBL] [Abstract][Full Text] [Related]
10. An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. Bertioli DJ; Moretzsohn MC; Madsen LH; Sandal N; Leal-Bertioli SC; Guimarães PM; Hougaard BK; Fredslund J; Schauser L; Nielsen AM; Sato S; Tabata S; Cannon SB; Stougaard J BMC Genomics; 2009 Jan; 10():45. PubMed ID: 19166586 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes. Wang Z; Cheng K; Wan L; Yan L; Jiang H; Liu S; Lei Y; Liao B BMC Genomics; 2015 Dec; 16():1053. PubMed ID: 26651343 [TBL] [Abstract][Full Text] [Related]
12. Structural analyses of the genomes in legumes. Sato S; Isobe S; Tabata S Curr Opin Plant Biol; 2010 Apr; 13(2):146-52. PubMed ID: 20071214 [TBL] [Abstract][Full Text] [Related]
14. The Medicago genome provides insight into the evolution of rhizobial symbioses. Young ND; Debellé F; Oldroyd GE; Geurts R; Cannon SB; Udvardi MK; Benedito VA; Mayer KF; Gouzy J; Schoof H; Van de Peer Y; Proost S; Cook DR; Meyers BC; Spannagl M; Cheung F; De Mita S; Krishnakumar V; Gundlach H; Zhou S; Mudge J; Bharti AK; Murray JD; Naoumkina MA; Rosen B; Silverstein KA; Tang H; Rombauts S; Zhao PX; Zhou P; Barbe V; Bardou P; Bechner M; Bellec A; Berger A; Bergès H; Bidwell S; Bisseling T; Choisne N; Couloux A; Denny R; Deshpande S; Dai X; Doyle JJ; Dudez AM; Farmer AD; Fouteau S; Franken C; Gibelin C; Gish J; Goldstein S; González AJ; Green PJ; Hallab A; Hartog M; Hua A; Humphray SJ; Jeong DH; Jing Y; Jöcker A; Kenton SM; Kim DJ; Klee K; Lai H; Lang C; Lin S; Macmil SL; Magdelenat G; Matthews L; McCorrison J; Monaghan EL; Mun JH; Najar FZ; Nicholson C; Noirot C; O'Bleness M; Paule CR; Poulain J; Prion F; Qin B; Qu C; Retzel EF; Riddle C; Sallet E; Samain S; Samson N; Sanders I; Saurat O; Scarpelli C; Schiex T; Segurens B; Severin AJ; Sherrier DJ; Shi R; Sims S; Singer SR; Sinharoy S; Sterck L; Viollet A; Wang BB; Wang K; Wang M; Wang X; Warfsmann J; Weissenbach J; White DD; White JD; Wiley GB; Wincker P; Xing Y; Yang L; Yao Z; Ying F; Zhai J; Zhou L; Zuber A; Dénarié J; Dixon RA; May GD; Schwartz DC; Rogers J; Quétier F; Town CD; Roe BA Nature; 2011 Nov; 480(7378):520-4. PubMed ID: 22089132 [TBL] [Abstract][Full Text] [Related]
15. The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. Thoquet P; Ghérardi M; Journet EP; Kereszt A; Ané JM; Prosperi JM; Huguet T BMC Plant Biol; 2002; 2():1. PubMed ID: 11825338 [TBL] [Abstract][Full Text] [Related]
16. Evolution and structural diversification of Nictaba-like lectin genes in food crops with a focus on soybean (Glycine max). Van Holle S; Rougé P; Van Damme EJM Ann Bot; 2017 Mar; 119(5):901-914. PubMed ID: 28087663 [TBL] [Abstract][Full Text] [Related]
17. Chromosome-length genome assemblies of six legume species provide insights into genome organization, evolution, and agronomic traits for crop improvement. Garg V; Dudchenko O; Wang J; Khan AW; Gupta S; Kaur P; Han K; Saxena RK; Kale SM; Pham M; Yu J; Chitikineni A; Zhang Z; Fan G; Lui C; Valluri V; Meng F; Bhandari A; Liu X; Yang T; Chen H; Valliyodan B; Roorkiwal M; Shi C; Yang HB; Durand NC; Pandey MK; Li G; Barmukh R; Wang X; Chen X; Lam HM; Jiang H; Zong X; Liang X; Liu X; Liao B; Guo B; Jackson S; Nguyen HT; Zhuang W; Shubo W; Wang X; Aiden EL; Bennetzen JL; Varshney RK J Adv Res; 2022 Dec; 42():315-329. PubMed ID: 36513421 [TBL] [Abstract][Full Text] [Related]
18. The chicken or the egg? Plastome evolution and an independent loss of the inverted repeat in papilionoid legumes. Lee C; Choi IS; Cardoso D; de Lima HC; de Queiroz LP; Wojciechowski MF; Jansen RK; Ruhlman TA Plant J; 2021 Aug; 107(3):861-875. PubMed ID: 34021942 [TBL] [Abstract][Full Text] [Related]
19. Discovery of SNPs in important legumes through comparative genome analysis and conversion of SNPs into PCR-based markers. Shilpa HB; Lohithaswa HC J Genet; 2021; 100():. PubMed ID: 34706999 [TBL] [Abstract][Full Text] [Related]
20. Hierarchically Aligning 10 Legume Genomes Establishes a Family-Level Genomics Platform. Wang J; Sun P; Li Y; Liu Y; Yu J; Ma X; Sun S; Yang N; Xia R; Lei T; Liu X; Jiao B; Xing Y; Ge W; Wang L; Wang Z; Song X; Yuan M; Guo D; Zhang L; Zhang J; Jin D; Chen W; Pan Y; Liu T; Jin L; Sun J; Yu J; Cheng R; Duan X; Shen S; Qin J; Zhang MC; Paterson AH; Wang X Plant Physiol; 2017 May; 174(1):284-300. PubMed ID: 28325848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]