BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 15489298)

  • 1. Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers.
    Härtel S; Fanani ML; Maggio B
    Biophys J; 2005 Jan; 88(1):287-304. PubMed ID: 15489298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bidirectional control of sphingomyelinase activity and surface topography in lipid monolayers.
    Fanani ML; Härtel S; Oliveira RG; Maggio B
    Biophys J; 2002 Dec; 83(6):3416-24. PubMed ID: 12496108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sphingomyelinase-induced domain shape relaxation driven by out-of-equilibrium changes of composition.
    Fanani ML; De Tullio L; Hartel S; Jara J; Maggio B
    Biophys J; 2009 Jan; 96(1):67-76. PubMed ID: 18849413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The action of sphingomyelinase in lipid monolayers as revealed by microscopic image analysis.
    Fanani ML; Hartel S; Maggio B; De Tullio L; Jara J; Olmos F; Oliveira RG
    Biochim Biophys Acta; 2010 Jul; 1798(7):1309-23. PubMed ID: 20067759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers.
    Sot J; Bagatolli LA; Goñi FM; Alonso A
    Biophys J; 2006 Feb; 90(3):903-14. PubMed ID: 16284266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sphingomyelinase-induced phase transformations: causing morphology switches and multiple-time-domain ceramide generation in model raft membranes.
    Chao L; Gast AP; Hatton TA; Jensen KF
    Langmuir; 2010 Jan; 26(1):344-56. PubMed ID: 19863058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The initial surface composition and topography modulate sphingomyelinase-driven sphingomyelin to ceramide conversion in lipid monolayers.
    De Tullio L; Maggio B; Hartel S; Jara J; Fanani ML
    Cell Biochem Biophys; 2007; 47(2):169-77. PubMed ID: 17652769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ordered-disordered domain coexistence in ternary lipid monolayers activates sphingomyelinase by clearing ceramide from the active phase.
    Ale EC; Maggio B; Fanani ML
    Biochim Biophys Acta; 2012 Nov; 1818(11):2767-76. PubMed ID: 22763279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane.
    Holopainen JM; Subramanian M; Kinnunen PK
    Biochemistry; 1998 Dec; 37(50):17562-70. PubMed ID: 9860872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sphingomyelinase acts by an area-activated mechanism on the liquid-expanded phase of sphingomyelin monolayers.
    De Tullio L; Maggio B; Fanani ML
    J Lipid Res; 2008 Nov; 49(11):2347-55. PubMed ID: 18509194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of ceramide-enriched domains in lipid particles enhances the binding of apolipoprotein E.
    Morita SY; Nakano M; Sakurai A; Deharu Y; Vertut-Doï A; Handa T
    FEBS Lett; 2005 Mar; 579(7):1759-64. PubMed ID: 15757672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid raft composition modulates sphingomyelinase activity and ceramide-induced membrane physical alterations.
    Silva LC; Futerman AH; Prieto M
    Biophys J; 2009 Apr; 96(8):3210-22. PubMed ID: 19383465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid bilayers containing sphingomyelins and ceramides of varying N-acyl lengths: a glimpse into sphingolipid complexity.
    Jiménez-Rojo N; García-Arribas AB; Sot J; Alonso A; Goñi FM
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):456-64. PubMed ID: 24144542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable nucleation time of functional sphingomyelinase--lipid features studied by membrane array statistic tool.
    Lin CY; Chao L
    Langmuir; 2013 Oct; 29(42):13008-17. PubMed ID: 24059643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemolysis induced by Bacillus cereus sphingomyelinase.
    Oda M; Takahashi M; Matsuno T; Uoo K; Nagahama M; Sakurai J
    Biochim Biophys Acta; 2010 Jun; 1798(6):1073-80. PubMed ID: 20214877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid domain morphologies in phosphatidylcholine-ceramide monolayers.
    Karttunen M; Haataja MP; Säily M; Vattulainen I; Holopainen JM
    Langmuir; 2009 Apr; 25(8):4595-600. PubMed ID: 19249826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide.
    Taniguchi Y; Ohba T; Miyata H; Ohki K
    Biochim Biophys Acta; 2006 Feb; 1758(2):145-53. PubMed ID: 16580624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers.
    Massey JB
    Biochim Biophys Acta; 2001 Feb; 1510(1-2):167-84. PubMed ID: 11342156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of externally applied electrostatic fields on the surface topography of ceramide-enriched domains in mixed monolayers with sphingomyelin.
    Wilke N; Maggio B
    Biophys Chem; 2006 Jun; 122(1):36-42. PubMed ID: 16529854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes.
    Contreras FX; Basañez G; Alonso A; Herrmann A; Goñi FM
    Biophys J; 2005 Jan; 88(1):348-59. PubMed ID: 15465865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.