These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 15489303)

  • 1. Disentangling ligand migration and heme pocket relaxation in cytochrome P450cam.
    Tetreau C; Mouawad L; Murail S; Duchambon P; Blouquit Y; Lavalette D
    Biophys J; 2005 Feb; 88(2):1250-63. PubMed ID: 15489303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The position 68(E11) side chain in myoglobin regulates ligand capture, bond formation with heme iron, and internal movement into the xenon cavities.
    Dantsker D; Roche C; Samuni U; Blouin G; Olson JS; Friedman JM
    J Biol Chem; 2005 Nov; 280(46):38740-55. PubMed ID: 16155005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational relaxation in hemoproteins: the cytochrome P-450cam case.
    Tetreau C; Tourbez M; Lavalette D
    Biochemistry; 2000 Nov; 39(46):14219-31. PubMed ID: 11087371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscosity-dependent relaxation significantly modulates the kinetics of CO recombination in the truncated hemoglobin TrHbN from Mycobacterium tuberculosis.
    Dantsker D; Samuni U; Ouellet Y; Wittenberg BA; Wittenberg JB; Milani M; Bolognesi M; Guertin M; Friedman JM
    J Biol Chem; 2004 Sep; 279(37):38844-53. PubMed ID: 15234986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and thermodynamics of CO binding to cytochrome P450nor.
    Shiro Y; Kato M; Iizuka T; Nakahara K; Shoun H
    Biochemistry; 1994 Jul; 33(29):8673-7. PubMed ID: 8038156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance Raman studies of cytochrome P450BM3 and its complexes with exogenous ligands.
    Deng TJ; Proniewicz LM; Kincaid JR; Yeom H; Macdonald ID; Sligar SG
    Biochemistry; 1999 Oct; 38(41):13699-706. PubMed ID: 10521277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurements of CO geminate recombination in cytochromes P450 and P420.
    Tian WD; Wells AV; Champion PM; Di Primo C; Gerber N; Sligar SG
    J Biol Chem; 1995 Apr; 270(15):8673-9. PubMed ID: 7721770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific and non-specific effects of potassium cations on substrate-protein interactions in cytochromes P450cam and P450lin.
    Deprez E; Gill E; Helms V; Wade RC; Hui Bon Hoa G
    J Inorg Biochem; 2002 Sep; 91(4):597-606. PubMed ID: 12237225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Electron-conformational interactions at the active site of reduced bacterial cytochrome P450cam induced by a substrate and analysis of the electron structure of heme].
    Sharonov IuA
    Mol Biol (Mosk); 1992; 26(6):1251-62. PubMed ID: 1491671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO migration pathways in cytochrome P450cam studied by molecular dynamics simulations.
    Mouawad L; Tetreau C; Abdel-Azeim S; Perahia D; Lavalette D
    Protein Sci; 2007 May; 16(5):781-94. PubMed ID: 17400927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton-coupled structural changes upon binding of carbon monoxide to cytochrome cd1: a combined flash photolysis and X-ray crystallography study.
    Sjögren T; Svensson-Ek M; Hajdu J; Brzezinski P
    Biochemistry; 2000 Sep; 39(36):10967-74. PubMed ID: 10998233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An engineered heme-copper center in myoglobin: CO migration and binding.
    Nienhaus K; Olson JS; Nienhaus GU
    Biochim Biophys Acta; 2013 Sep; 1834(9):1824-31. PubMed ID: 23459127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand binding dynamics to the heme domain of the oxygen sensor Dos from Escherichia coli.
    Liebl U; Bouzhir-Sima L; Kiger L; Marden MC; Lambry JC; Négrerie M; Vos MH
    Biochemistry; 2003 Jun; 42(21):6527-35. PubMed ID: 12767236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hierarchy of functionally important relaxations within myoglobin based on solvent effects, mutations and kinetic model.
    Dantsker D; Samuni U; Friedman JM; Agmon N
    Biochim Biophys Acta; 2005 Jun; 1749(2):234-51. PubMed ID: 15914102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distal heme pocket conformers of carbonmonoxy derivatives of Ascaris hemoglobin: evidence of conformational trapping in porous sol-gel matrices.
    Das TK; Samuni U; Lin Y; Goldberg DE; Rousseau DL; Friedman JM
    J Biol Chem; 2004 Mar; 279(11):10433-41. PubMed ID: 14688246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand binding to heme proteins: connection between dynamics and function.
    Steinbach PJ; Ansari A; Berendzen J; Braunstein D; Chu K; Cowen BR; Ehrenstein D; Frauenfelder H; Johnson JB; Lamb DC
    Biochemistry; 1991 Apr; 30(16):3988-4001. PubMed ID: 2018767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics assignment of NMR correlation times to specific motions in a "basket-handle porphyrin" heme.
    Popescu R; Mispelter J; Gallay J; Mouawad L
    J Phys Chem B; 2005 Feb; 109(7):2995-3007. PubMed ID: 16851314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of ligand dynamics on heme electronic transition band III in myoglobin.
    Nienhaus K; Lamb DC; Deng P; Nienhaus GU
    Biophys J; 2002 Feb; 82(2):1059-67. PubMed ID: 11806945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational relaxation and ligand binding in myoglobin.
    Ansari A; Jones CM; Henry ER; Hofrichter J; Eaton WA
    Biochemistry; 1994 May; 33(17):5128-45. PubMed ID: 8172888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.