BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 15489446)

  • 1. Temporal analysis of Coxiella burnetii morphological differentiation.
    Coleman SA; Fischer ER; Howe D; Mead DJ; Heinzen RA
    J Bacteriol; 2004 Nov; 186(21):7344-52. PubMed ID: 15489446
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Moormeier DE; Sandoz KM; Beare PA; Sturdevant DE; Nair V; Cockrell DC; Miller HE; Heinzen RA
    J Bacteriol; 2019 Apr; 201(8):. PubMed ID: 30745369
    [No Abstract]   [Full Text] [Related]  

  • 3. Developmentally regulated synthesis of an unusually small, basic peptide by Coxiella burnetii.
    Heinzen RA; Howe D; Mallavia LP; Rockey DD; Hackstadt T
    Mol Microbiol; 1996 Oct; 22(1):9-19. PubMed ID: 8899704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form.
    Sandoz KM; Popham DL; Beare PA; Sturdevant DE; Hansen B; Nair V; Heinzen RA
    PLoS One; 2016; 11(2):e0149957. PubMed ID: 26909555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental transitions of Coxiella burnetii grown in axenic media.
    Sandoz KM; Sturdevant DE; Hansen B; Heinzen RA
    J Microbiol Methods; 2014 Jan; 96():104-10. PubMed ID: 24286928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a stress-induced alternate sigma factor, RpoS, of Coxiella burnetii and its expression during the development cycle.
    Seshadri R; Samuel JE
    Infect Immun; 2001 Aug; 69(8):4874-83. PubMed ID: 11447163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coxiella burnetii exhibits morphological change and delays phagolysosomal fusion after internalization by J774A.1 cells.
    Howe D; Mallavia LP
    Infect Immun; 2000 Jul; 68(7):3815-21. PubMed ID: 10858189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteome and antigen profiling of Coxiella burnetii developmental forms.
    Coleman SA; Fischer ER; Cockrell DC; Voth DE; Howe D; Mead DJ; Samuel JE; Heinzen RA
    Infect Immun; 2007 Jan; 75(1):290-8. PubMed ID: 17088354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of chimeric phagosomes that shelter Mycobacterium avium and Coxiella burnetii (phase II) in doubly infected mouse macrophages: an ultrastructural study.
    de Chastellier C; Thibon M; Rabinovitch M
    Eur J Cell Biol; 1999 Aug; 78(8):580-92. PubMed ID: 10494865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental Transitions Coordinate Assembly of the Coxiella burnetii Dot/Icm Type IV Secretion System.
    Park D; Steiner S; Shao M; Roy CR; Liu J
    Infect Immun; 2022 Oct; 90(10):e0041022. PubMed ID: 36190257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental cycle of Coxiella burnetii: structure and morphogenesis of vegetative and sporogenic differentiations.
    McCaul TF; Williams JC
    J Bacteriol; 1981 Sep; 147(3):1063-76. PubMed ID: 7275931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental biology of Coxiella burnetii.
    Minnick MF; Raghavan R
    Adv Exp Med Biol; 2012; 984():231-48. PubMed ID: 22711635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A DNA-binding peroxiredoxin of Coxiella burnetii is involved in countering oxidative stress during exponential-phase growth.
    Hicks LD; Raghavan R; Battisti JM; Minnick MF
    J Bacteriol; 2010 Apr; 192(8):2077-84. PubMed ID: 20173000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient method of cloning the obligate intracellular bacterium Coxiella burnetii.
    Beare PA; Howe D; Cockrell DC; Heinzen RA
    Appl Environ Microbiol; 2007 Jun; 73(12):4048-54. PubMed ID: 17468273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid A Has Significance for Optimal Growth of
    Wang T; Yu Y; Liang X; Luo S; He Z; Sun Z; Jiang Y; Omsland A; Zhou P; Song L
    Front Cell Infect Microbiol; 2018; 8():192. PubMed ID: 29938202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of whole cell lysate from the intercellular bacterium Coxiella burnetii using two gel-based protein separation techniques.
    Samoilis G; Psaroulaki A; Vougas K; Tselentis Y; Tsiotis G
    J Proteome Res; 2007 Aug; 6(8):3032-41. PubMed ID: 17602512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth of Coxiella burnetii in the Ixodes scapularis-derived IDE8 tick cell line.
    Herrin B; Mahapatra S; Blouin EF; Shaw EI
    Vector Borne Zoonotic Dis; 2011 Jul; 11(7):917-22. PubMed ID: 21254834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Coxiella burnetii phospholipase A homolog pldA is required for optimal growth in macrophages and developmental form lipid remodeling.
    Stead CM; Cockrell DC; Beare PA; Miller HE; Heinzen RA
    BMC Microbiol; 2018 Apr; 18(1):33. PubMed ID: 29661138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a Coxiella burnetii ftsZ mutant generated by Himar1 transposon mutagenesis.
    Beare PA; Howe D; Cockrell DC; Omsland A; Hansen B; Heinzen RA
    J Bacteriol; 2009 Mar; 191(5):1369-81. PubMed ID: 19114492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maturation of the Coxiella burnetii parasitophorous vacuole requires bacterial protein synthesis but not replication.
    Howe D; Melnicáková J; Barák I; Heinzen RA
    Cell Microbiol; 2003 Jul; 5(7):469-80. PubMed ID: 12814437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.