These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 1548984)

  • 1. Effect of landing stiffness on joint kinetics and energetics in the lower extremity.
    Devita P; Skelly WA
    Med Sci Sports Exerc; 1992 Jan; 24(1):108-15. PubMed ID: 1548984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lower extremity joint kinetics and energetics during backward running.
    DeVita P; Stribling J
    Med Sci Sports Exerc; 1991 May; 23(5):602-10. PubMed ID: 2072839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of landing height on frontal plane kinematics, kinetics and energy dissipation at lower extremity joints.
    Yeow CH; Lee PV; Goh JC
    J Biomech; 2009 Aug; 42(12):1967-73. PubMed ID: 19501826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sex differences in lower extremity biomechanics during single leg landings.
    Schmitz RJ; Kulas AS; Perrin DH; Riemann BL; Shultz SJ
    Clin Biomech (Bristol); 2007 Jul; 22(6):681-8. PubMed ID: 17499896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis.
    Augustsson J; Thomeé R; Lindén C; Folkesson M; Tranberg R; Karlsson J
    Scand J Med Sci Sports; 2006 Apr; 16(2):111-20. PubMed ID: 16533349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regression relationships of landing height with ground reaction forces, knee flexion angles, angular velocities and joint powers during double-leg landing.
    Yeow CH; Lee PV; Goh JC
    Knee; 2009 Oct; 16(5):381-6. PubMed ID: 19250828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of landing maneuvers between male and female college volleyball players.
    Salci Y; Kentel BB; Heycan C; Akin S; Korkusuz F
    Clin Biomech (Bristol); 2004 Jul; 19(6):622-8. PubMed ID: 15234487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-linear flexion relationships of the knee with the hip and ankle, and their relative postures during landing.
    Yeow CH; Lee PV; Goh JC
    Knee; 2011 Oct; 18(5):323-8. PubMed ID: 20638850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of trunk flexion on hip and knee joint kinematics during a controlled drop landing.
    Blackburn JT; Padua DA
    Clin Biomech (Bristol); 2008 Mar; 23(3):313-9. PubMed ID: 18037546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lower extremity biomechanics during the landing of a stop-jump task.
    Yu B; Lin CF; Garrett WE
    Clin Biomech (Bristol); 2006 Mar; 21(3):297-305. PubMed ID: 16378667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sagittal knee joint kinematics and energetics in response to different landing heights and techniques.
    Yeow CH; Lee PV; Goh JC
    Knee; 2010 Mar; 17(2):127-31. PubMed ID: 19720537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lower extremity control and dynamics during backward angular impulse generation in forward translating tasks.
    Mathiyakom W; McNitt-Gray JL; Wilcox R
    J Biomech; 2006; 39(6):990-1000. PubMed ID: 15878165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influences of hip external rotation strength on knee mechanics during single-leg drop landings in females.
    Lawrence RK; Kernozek TW; Miller EJ; Torry MR; Reuteman P
    Clin Biomech (Bristol); 2008 Jul; 23(6):806-13. PubMed ID: 18395310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation of lower extremity energy dissipation strategies during single-leg and double-leg landing based on sagittal and frontal plane biomechanics.
    Yeow CH; Lee PV; Goh JC
    Hum Mov Sci; 2011 Jun; 30(3):624-35. PubMed ID: 21411162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of the lower extremities during drop landings from three heights.
    McNitt-Gray JL
    J Biomech; 1993 Sep; 26(9):1037-46. PubMed ID: 8408086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer.
    Ericson M
    Scand J Rehabil Med Suppl; 1986; 16():1-43. PubMed ID: 3468609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On hip and lumbar biomechanics. A study of joint load and muscular activity.
    Németh G
    Scand J Rehabil Med Suppl; 1984; 10():1-35. PubMed ID: 6390670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of a functional knee brace on the biomechanics of running.
    Devita P; Hunter PB; Skelly WA
    Med Sci Sports Exerc; 1992 Jul; 24(7):797-806. PubMed ID: 1501565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lower limb coordination and stiffness during landing from volleyball block jumps.
    Hughes G; Watkins J
    Res Sports Med; 2008; 16(2):138-54. PubMed ID: 18569947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of muscle-tendon length on joint moment and power during sprint starts.
    Mero A; Kuitunen S; Harland M; Kyröläinen H; Komi PV
    J Sports Sci; 2006 Feb; 24(2):165-73. PubMed ID: 16368626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.