These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 15489969)

  • 1. Light metal hydrides and complex hydrides for hydrogen storage.
    Schüth F; Bogdanović B; Felderhoff M
    Chem Commun (Camb); 2004 Oct; (20):2249-58. PubMed ID: 15489969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical and physical solutions for hydrogen storage.
    Eberle U; Felderhoff M; Schüth F
    Angew Chem Int Ed Engl; 2009; 48(36):6608-30. PubMed ID: 19598190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery.
    Yang J; Sudik A; Wolverton C; Siegel DJ
    Chem Soc Rev; 2010 Feb; 39(2):656-75. PubMed ID: 20111786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New approaches to hydrogen storage.
    Graetz J
    Chem Soc Rev; 2009 Jan; 38(1):73-82. PubMed ID: 19088966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for the improvement of the hydrogen storage properties of metal hydride materials.
    Wu H
    Chemphyschem; 2008 Oct; 9(15):2157-62. PubMed ID: 18821548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new Li-Al-N-H system for reversible hydrogen storage.
    Lu J; Fang ZZ; Sohn HY
    J Phys Chem B; 2006 Jul; 110(29):14236-9. PubMed ID: 16854126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications.
    Liu Y; Yang Y; Gao M; Pan H
    Chem Rec; 2016 Feb; 16(1):189-204. PubMed ID: 26638824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles study of Ti-catalyzed hydrogen chemisorption on an Al surface: a critical first step for reversible hydrogen storage in NaAlH4.
    Chaudhuri S; Muckerman JT
    J Phys Chem B; 2005 Apr; 109(15):6952-7. PubMed ID: 16851788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals.
    de Jongh PE; Adelhelm P
    ChemSusChem; 2010 Dec; 3(12):1332-48. PubMed ID: 21080405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium alanate nanoparticles--linking size to hydrogen storage properties.
    Baldé CP; Hereijgers BP; Bitter JH; de Jong KP
    J Am Chem Soc; 2008 May; 130(21):6761-5. PubMed ID: 18459778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ternary MgTiX-alloys: a promising route towards low-temperature, high-capacity, hydrogen-storage materials.
    Vermeulen P; van Thiel EF; Notten PH
    Chemistry; 2007; 13(35):9892-8. PubMed ID: 17879246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage.
    Alapati SV; Karl Johnson J; Sholl DS
    Phys Chem Chem Phys; 2007 Mar; 9(12):1438-52. PubMed ID: 17356751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dehydrogenation mechanism of metal hydrides based on interactions between Hdelta+ and H-.
    Lu J; Fang ZZ; Sohn HY
    Inorg Chem; 2006 Oct; 45(21):8749-54. PubMed ID: 17029387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen storage: the remaining scientific and technological challenges.
    Felderhoff M; Weidenthaler C; von Helmolt R; Eberle U
    Phys Chem Chem Phys; 2007 Jun; 9(21):2643-53. PubMed ID: 17627309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multifaceted approach to hydrogen storage.
    Churchard AJ; Banach E; Borgschulte A; Caputo R; Chen JC; Clary D; Fijalkowski KJ; Geerlings H; Genova RV; Grochala W; Jaroń T; Juanes-Marcos JC; Kasemo B; Kroes GJ; Ljubić I; Naujoks N; Nørskov JK; Olsen RA; Pendolino F; Remhof A; Románszki L; Tekin A; Vegge T; Zäch M; Züttel A
    Phys Chem Chem Phys; 2011 Oct; 13(38):16955-72. PubMed ID: 21887432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-organic frameworks as templates for nanoscale NaAlH4.
    Bhakta RK; Herberg JL; Jacobs B; Highley A; Behrens R; Ockwig NW; Greathouse JA; Allendorf MD
    J Am Chem Soc; 2009 Sep; 131(37):13198-9. PubMed ID: 19719170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoporous polymers for hydrogen storage.
    Germain J; Fréchet JM; Svec F
    Small; 2009 May; 5(10):1098-111. PubMed ID: 19360719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards understanding a mechanism for reversible hydrogen storage: theoretical study of transition metal catalysed dehydrogenation of sodium alanate.
    Ljubić I; Clary DC
    Phys Chem Chem Phys; 2010 Apr; 12(16):4012-23. PubMed ID: 20379493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prospects for hydrogen storage in graphene.
    Tozzini V; Pellegrini V
    Phys Chem Chem Phys; 2013 Jan; 15(1):80-9. PubMed ID: 23165421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploration of the nature of active Ti species in metallic Ti-doped NaAlH4.
    Wang P; Kang XD; Cheng HM
    J Phys Chem B; 2005 Nov; 109(43):20131-6. PubMed ID: 16853602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.