These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 1549015)

  • 1. Assessment of body composition in heart transplant patients.
    Keteyian SJ; Marks CR; Fedel FJ; Ehrman JK; Goslin BR; Connolly AM; Fachnie JD; Levine TB; O'Neil MJ
    Med Sci Sports Exerc; 1992 Feb; 24(2):247-52. PubMed ID: 1549015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Body composition prediction in university football players.
    Smith JF; Mansfield ER
    Med Sci Sports Exerc; 1984 Aug; 16(4):398-405. PubMed ID: 6493021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validity of "generalized" equations for body composition analysis in male athletes.
    Sinning WE; Dolny DG; Little KD; Cunningham LN; Racaniello A; Siconolfi SF; Sholes JL
    Med Sci Sports Exerc; 1985 Feb; 17(1):124-30. PubMed ID: 3982266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of percent body fat in adult males using dual energy x-ray absorptiometry, skinfolds, and hydrostatic weighing.
    Clark RR; Kuta JM; Sullivan JC
    Med Sci Sports Exerc; 1993 Apr; 25(4):528-35. PubMed ID: 8479309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anthropometric changes at high altitude.
    Fulco CS; Cymerman A; Pimental NA; Young AJ; Maher JT
    Aviat Space Environ Med; 1985 Mar; 56(3):220-4. PubMed ID: 3985901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related pattern of body density and body composition of Japanese men and women 18-59 years of age.
    Tahara Y; Moji K; Aoyagi K; Tsunawake N; Muraki S; Mascie-Taylor CG
    Am J Hum Biol; 2002; 14(6):743-52. PubMed ID: 12400035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of skinfolds and bioelectrical impedance for body composition assessment after weight reduction.
    Paijmans IJ; Wilmore KM; Wilmore JH
    J Am Coll Nutr; 1992 Apr; 11(2):145-51. PubMed ID: 1578089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Body composition analysis of female adolescent athletes: comparing six regression equations.
    Webster BL; Barr SI
    Med Sci Sports Exerc; 1993 May; 25(5):648-53. PubMed ID: 8492694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Validation by hydrodensitometry of skinfold thickness equations used for female body composition assessment].
    Aristizábal JC; Restrepo MT; Amalia L
    Biomedica; 2008 Sep; 28(3):404-13. PubMed ID: 19034363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity of skinfold equations for estimating body density in youth wrestlers.
    Stout JR; Housh TJ; Johnson GO; Housh DJ; Evans SA; Eckerson JM
    Med Sci Sports Exerc; 1995 Sep; 27(9):1321-5. PubMed ID: 8531632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multicomponent cross-validation of minimum weight predictions for college wrestlers.
    Clark RR; Sullivan JC; Bartok C; Schoeller DA
    Med Sci Sports Exerc; 2003 Feb; 35(2):342-7. PubMed ID: 12569226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of body composition assessment by hydrodensitometry, skinfolds, and multiple site near-infrared spectrophotometry.
    Hortobágyi T; Israel RG; Houmard JA; McCammon MR; O'Brien KF
    Eur J Clin Nutr; 1992 Mar; 46(3):205-11. PubMed ID: 1559525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of four methods to assess body composition in women.
    Eaton AW; Israel RG; O'Brien KF; Hortobagyi T; McCammon MR
    Eur J Clin Nutr; 1993 May; 47(5):353-60. PubMed ID: 8319671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validity of anthropometric equations for the estimation of body density in adolescent athletes.
    Thorland WG; Johnson GO; Tharp GD; Fagot TG; Hammer RW
    Med Sci Sports Exerc; 1984; 16(1):77-81. PubMed ID: 6708784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized equations for predicting body density of women.
    Jackson AS; Pollock ML; Ward A
    Med Sci Sports Exerc; 1980; 12(3):175-81. PubMed ID: 7402053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved prediction of body fat by measuring skinfold thickness, circumferences, and bone breadths.
    Garcia AL; Wagner K; Hothorn T; Koebnick C; Zunft HJ; Trippo U
    Obes Res; 2005 Mar; 13(3):626-34. PubMed ID: 15833949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual energy X-ray absorptiometry versus skinfold measurements in the assessment of total body fat in renal transplant recipients.
    Hart PD; Wilkie ME; Edwards A; Cunningham J
    Eur J Clin Nutr; 1993 May; 47(5):347-52. PubMed ID: 8319670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of anthropometric variables to predict relative body fat determined by a four-compartment body composition model.
    van der Ploeg GE; Gunn SM; Withers RT; Modra AC
    Eur J Clin Nutr; 2003 Aug; 57(8):1009-16. PubMed ID: 12879096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A five-compartment model of body composition of healthy subjects assessed using in vivo neutron activation analysis.
    Ryde SJ; Birks JL; Morgan WD; Evans CJ; Dutton J
    Eur J Clin Nutr; 1993 Dec; 47(12):863-74. PubMed ID: 8156983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of DXA body composition estimates in obese men and women.
    LaForgia J; Dollman J; Dale MJ; Withers RT; Hill AM
    Obesity (Silver Spring); 2009 Apr; 17(4):821-6. PubMed ID: 19131939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.