These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 15490224)
1. Neural network model of selective visual attention using Hodgkin-Huxley equation. Katayama K; Yano M; Horiguchi T Biol Cybern; 2004 Nov; 91(5):315-25. PubMed ID: 15490224 [TBL] [Abstract][Full Text] [Related]
2. Selective attention model with spiking elements. Chik D; Borisyuk R; Kazanovich Y Neural Netw; 2009 Sep; 22(7):890-900. PubMed ID: 19278823 [TBL] [Abstract][Full Text] [Related]
3. A neural model of selective attention and object segmentation in the visual scene: an approach based on partial synchronization and star-like architecture of connections. Borisyuk R; Kazanovich Y; Chik D; Tikhanoff V; Cangelosi A Neural Netw; 2009; 22(5-6):707-19. PubMed ID: 19616919 [TBL] [Abstract][Full Text] [Related]
5. A visual model for object detection based on active contours and level-set method. Satoh S Biol Cybern; 2006 Sep; 95(3):259-70. PubMed ID: 16874530 [TBL] [Abstract][Full Text] [Related]
6. Mean field theory for a balanced hypercolumn model of orientation selectivity in primary visual cortex. Lerchner A; Sterner G; Hertz J; Ahmadi M Network; 2006 Jun; 17(2):131-50. PubMed ID: 16818394 [TBL] [Abstract][Full Text] [Related]
7. A feedback model of visual attention. Spratling MW; Johnson MH J Cogn Neurosci; 2004 Mar; 16(2):219-37. PubMed ID: 15068593 [TBL] [Abstract][Full Text] [Related]
8. A unified and quantitative network model for spatial attention in area V4. Hugues E; José JV J Physiol Paris; 2010; 104(1-2):84-90. PubMed ID: 19941956 [TBL] [Abstract][Full Text] [Related]
11. Population approach to a neural discrimination task. Gaillard B; Buxton H; Feng J Biol Cybern; 2006 Mar; 94(3):180-91. PubMed ID: 16331488 [TBL] [Abstract][Full Text] [Related]
12. Modeling the top-down influences on the lateral interactions in the visual cortex. Setić M; Domijan D Brain Res; 2008 Aug; 1225():86-101. PubMed ID: 18620341 [TBL] [Abstract][Full Text] [Related]
13. A neural network implementation of a saliency map model. de Brecht M; Saiki J Neural Netw; 2006 Dec; 19(10):1467-74. PubMed ID: 16687235 [TBL] [Abstract][Full Text] [Related]
14. Spatial scene representations formed by self-organizing learning in a hippocampal extension of the ventral visual system. Rolls ET; Tromans JM; Stringer SM Eur J Neurosci; 2008 Nov; 28(10):2116-27. PubMed ID: 19046392 [TBL] [Abstract][Full Text] [Related]
15. [A model for evoked activity of hippocampal neuronal population]. Chizhov AV Biofizika; 2002; 47(6):1086-94. PubMed ID: 12500573 [TBL] [Abstract][Full Text] [Related]
16. A new view of the primary visual cortex. Shapley R Neural Netw; 2004; 17(5-6):615-23. PubMed ID: 15288887 [No Abstract] [Full Text] [Related]
17. Shifts in selective visual attention: towards the underlying neural circuitry. Koch C; Ullman S Hum Neurobiol; 1985; 4(4):219-27. PubMed ID: 3836989 [TBL] [Abstract][Full Text] [Related]
18. Perceptual filling-in: More than the eye can see. De Weerd P Prog Brain Res; 2006; 154():227-45. PubMed ID: 17010714 [TBL] [Abstract][Full Text] [Related]
19. How noise affects the synchronization properties of recurrent networks of inhibitory neurons. Brunel N; Hansel D Neural Comput; 2006 May; 18(5):1066-110. PubMed ID: 16595058 [TBL] [Abstract][Full Text] [Related]
20. Emergence of sequence sensitivity in a hippocampal CA3-CA1 model. Yoshida M; Hayashi H Neural Netw; 2007 Aug; 20(6):653-67. PubMed ID: 17604603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]