These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 15490284)
1. Comparative analysis of surface electrostatic potentials of carbon, boron/nitrogen and carbon/boron/nitrogen model nanotubes. Politzer P; Lane P; Murray JS; Concha MC J Mol Model; 2005 Feb; 11(1):1-7. PubMed ID: 15490284 [TBL] [Abstract][Full Text] [Related]
2. A comparative study on carbon, boron-nitride, boron-phosphide and silicon-carbide nanotubes based on surface electrostatic potentials and average local ionization energies. Esrafili MD; Behzadi H J Mol Model; 2013 Jun; 19(6):2375-82. PubMed ID: 23408252 [TBL] [Abstract][Full Text] [Related]
3. The template synthesis of double coaxial carbon nanotubes with nitrogen-doped and boron-doped multiwalls. Yang Q; Xu W; Tomita A; Kyotani T J Am Chem Soc; 2005 Jun; 127(25):8956-7. PubMed ID: 15969565 [TBL] [Abstract][Full Text] [Related]
4. Syntheses and properties of B-C-N and BN nanostructures. Ma R; Golberg D; Bando Y; Sasaki T Philos Trans A Math Phys Eng Sci; 2004 Oct; 362(1823):2161-86. PubMed ID: 15370476 [TBL] [Abstract][Full Text] [Related]
5. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? Zhao Y; Yang L; Chen S; Wang X; Ma Y; Wu Q; Jiang Y; Qian W; Hu Z J Am Chem Soc; 2013 Jan; 135(4):1201-4. PubMed ID: 23317479 [TBL] [Abstract][Full Text] [Related]
6. Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons. Yu SS; Zheng WT Nanoscale; 2010 Jul; 2(7):1069-82. PubMed ID: 20648331 [TBL] [Abstract][Full Text] [Related]
7. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation. Roosta S; Hashemianzadeh SM; Ketabi S Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():98-103. PubMed ID: 27287103 [TBL] [Abstract][Full Text] [Related]
8. Electrical properties and far infrared optical conductivity of boron-doped single-walled carbon nanotube films. Liu XM; Gutiérrez HR; Eklund PC J Phys Condens Matter; 2010 Aug; 22(33):334213. PubMed ID: 21386503 [TBL] [Abstract][Full Text] [Related]
9. Substitutional doping of carbon nanotubes with heteroatoms and their chemical applications. Zhang Y; Zhang J; Su DS ChemSusChem; 2014 May; 7(5):1240-50. PubMed ID: 24678055 [TBL] [Abstract][Full Text] [Related]
10. Effect of substitutionally boron-doped single-walled semiconducting zigzag carbon nanotubes on ammonia adsorption. Vikramaditya T; Sumithra K J Comput Chem; 2014 Mar; 35(7):586-94. PubMed ID: 24395720 [TBL] [Abstract][Full Text] [Related]
11. Cryogenic separation of hydrogen isotopes in single-walled carbon and boron-nitride nanotubes: insight into the mechanism of equilibrium quantum sieving in quasi-one-dimensional pores. Kowalczyk P; Gauden PA; Terzyk AP J Phys Chem B; 2008 Jul; 112(28):8275-84. PubMed ID: 18570395 [TBL] [Abstract][Full Text] [Related]
12. Molecular insight into adsorption affinities of Carmustine drug on boron and nitrogen doped functionalized single-walled carbon nanotubes using density functional theory including dispersion correction calculations and molecular dynamics simulation. Khorrampour R; Raissi H J Biomol Struct Dyn; 2020 Oct; 38(16):4817-4826. PubMed ID: 31709932 [TBL] [Abstract][Full Text] [Related]
13. Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen. Ducati C; Koziol K; Friedrichs S; Yates TJ; Shaffer MS; Midgley PA; Windle AH Small; 2006 Jun; 2(6):774-84. PubMed ID: 17193122 [TBL] [Abstract][Full Text] [Related]
14. Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes. Cruz-Silva E; Cullen DA; Gu L; Romo-Herrera JM; Muñoz-Sandoval E; López-Urías F; Sumpter BG; Meunier V; Charlier JC; Smith DJ; Terrones H; Terrones M ACS Nano; 2008 Mar; 2(3):441-8. PubMed ID: 19206568 [TBL] [Abstract][Full Text] [Related]
15. The nature of graphite- and pyridinelike nitrogen configurations in carbon nitride nanotubes: dependence on diameter and helicity. Yang SH; Shin WH; Kang JK Small; 2008 Apr; 4(4):437-41. PubMed ID: 18348228 [No Abstract] [Full Text] [Related]
16. Highly conductive boron nanotubes: transport properties, work functions, and structural stabilities. Bezugly V; Kunstmann J; Grundkötter-Stock B; Frauenheim T; Niehaus T; Cuniberti G ACS Nano; 2011 Jun; 5(6):4997-5005. PubMed ID: 21528877 [TBL] [Abstract][Full Text] [Related]
18. Vertically aligned BCN nanotubes with high capacitance. Iyyamperumal E; Wang S; Dai L ACS Nano; 2012 Jun; 6(6):5259-65. PubMed ID: 22639830 [TBL] [Abstract][Full Text] [Related]
19. Interaction between glycine/glycine radicals and intrinsic/boron-doped (8,0) single-walled carbon nanotubes: a density functional theory study. Sun W; Bu Y; Wang Y J Phys Chem B; 2008 Dec; 112(48):15442-9. PubMed ID: 19006275 [TBL] [Abstract][Full Text] [Related]
20. Quantum study of boron nitride nanotubes functionalized with anticancer molecules. Duverger E; Gharbi T; Delabrousse E; Picaud F Phys Chem Chem Phys; 2014 Sep; 16(34):18425-32. PubMed ID: 25070038 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]